A230139
Numbers n such that (17^n - 4^n)/13 is prime.
Original entry on oeis.org
3, 5, 7, 11, 31, 101, 887, 4861
Offset: 1
Cf.
A004063,
A028491,
A057468,
A059801,
A121877,
A128024,
A128025,
A128026,
A128027,
A128028,
A128029,
A128030,
A128031,
A128032,
A210506,
A128347,
A128352,
A225807.
-
Select[Prime[Range[1, 100000]], PrimeQ[(17^# - 4^#)/13]&]
-
is(n)=ispseudoprime((17^n-4^n)/13) \\ Charles R Greathouse IV, Jun 13 2017
A241921
Numbers k such that (15^k - 4^k)/11 is prime.
Original entry on oeis.org
2, 1097, 2243, 2857, 4357, 6803, 20747, 24571
Offset: 1
Cf.
A004063,
A028491,
A057468,
A059801,
A121877,
A128024,
A128025,
A128026,
A128027,
A128028,
A128029,
A128030,
A128031,
A128032,
A210506,
A128347,
A225955,
A062581.
-
Select[Prime[Range[1, 100000]], PrimeQ[(15^# - 4^#)/11]&]
-
is(n)=ispseudoprime((15^n-4^n)/11) \\ Charles R Greathouse IV, Jun 13 2017
A375620
Numbers k such that (20^k - 3^k)/17 is prime.
Original entry on oeis.org
2, 43, 1723, 2971, 3257, 12263, 38933
Offset: 1
a(1) = 2 corresponds to the prime number 23.
Cf.
A028491,
A057468,
A128032,
A059801,
A121877,
A128024,
A128025,
A128026,
A128027,
A128028,
A128029,
A128030,
A128031,
A128032.
Comments