cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A219341 Least prime k such that k*2^n + 1 divides 2^k - 1, or 0 if no such prime exists.

Original entry on oeis.org

2, 3, 0, 11, 397, 839, 1459, 2081, 7297, 53849, 3499, 70589, 792277, 20399, 11173873, 929057, 232591, 6782759, 5834299, 26812151, 40269673, 88529891, 368454343, 616767917, 1167319801, 709939943, 38151887029, 38617336361, 23280518791, 168046587719, 882701485339
Offset: 0

Views

Author

Arkadiusz Wesolowski, Nov 18 2012

Keywords

Comments

If a(n) > 0, then a(n)*2^n + 1 is in A122094.

Crossrefs

Programs

  • Mathematica
    lst = {}; Do[k = 2; If[n == 2, AppendTo[lst, 0], While[True, If[PrimeQ[k], f = k*2^n + 1; If[PrimeQ[f] && PowerMod[2, k, f] == 1, AppendTo[lst, k]; Break[]]]; k++]], {n, 0, 13}]; lst

Extensions

a(26)-a(30) from Jason Yuen, May 24 2024

A256172 Primes of the form 6*p + 1 with p prime that are also of the form x^2 + 27*y^2 and congruent to 7 mod 24.

Original entry on oeis.org

31, 223, 439, 1399, 2383, 2767, 3343, 3463, 3607, 4567, 6079, 7927, 8167, 8287, 8719, 10159, 10663, 11959, 14503, 15559, 15727, 17383, 18223, 19087, 20743, 21487, 21559, 24007, 25639, 26647, 27103, 27583, 28807, 28879, 29167, 29599, 31183, 32359, 33343
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jun 01 2015

Keywords

Comments

a(n) divides 2^m - 1, where m = (a(n) - 7)/6 + 1.

Crossrefs

Subsequence of A122094.

Formula

A014752 INTERSECT A051644 INTERSECT A107006.
Previous Showing 11-12 of 12 results.