A219341 Least prime k such that k*2^n + 1 divides 2^k - 1, or 0 if no such prime exists.
2, 3, 0, 11, 397, 839, 1459, 2081, 7297, 53849, 3499, 70589, 792277, 20399, 11173873, 929057, 232591, 6782759, 5834299, 26812151, 40269673, 88529891, 368454343, 616767917, 1167319801, 709939943, 38151887029, 38617336361, 23280518791, 168046587719, 882701485339
Offset: 0
Keywords
Links
- G. L. Honaker, Jr. and Chris Caldwell, Prime Curios! 232591
- Eric Weisstein's World of Mathematics, Mersenne Number
Programs
-
Mathematica
lst = {}; Do[k = 2; If[n == 2, AppendTo[lst, 0], While[True, If[PrimeQ[k], f = k*2^n + 1; If[PrimeQ[f] && PowerMod[2, k, f] == 1, AppendTo[lst, k]; Break[]]]; k++]], {n, 0, 13}]; lst
Extensions
a(26)-a(30) from Jason Yuen, May 24 2024
Comments