cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 47 results. Next

A122286 Signature permutations of SPINE-transformations of Catalan automorphisms in table A122204.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 2, 2, 1, 0, 5, 8, 3, 2, 1, 0, 6, 7, 4, 3, 2, 1, 0, 7, 6, 6, 5, 3, 2, 1, 0, 8, 5, 5, 4, 5, 3, 2, 1, 0, 9, 4, 7, 6, 6, 6, 3, 2, 1, 0, 10, 22, 8, 7, 4, 5, 6, 3, 2, 1, 0, 11, 21, 9, 8, 7, 4, 4, 4, 3, 2, 1, 0, 12, 20, 14, 13, 8, 7, 5, 5, 4, 3, 2, 1, 0, 13, 17, 11, 12, 13
Offset: 0

Views

Author

Antti Karttunen, Sep 01 2006, Jun 20 2007

Keywords

Comments

Row n is the signature permutation of the Catalan automorphism which is obtained from the n-th automorphism in the table A122204 with the recursion scheme "SPINE", or equivalently row n is obtained as SPINE(ENIPS(n-th row of A089840)). See A122203 and A122204 for the description of SPINE and ENIPS. Each row occurs only once in this table. Inverses of these permutations can be found in table A122285. This table contains also all the rows of A122203 and A089840.

References

  • A. Karttunen, paper in preparation, draft available by e-mail.

Crossrefs

The first 22 rows of this table: row 0 (identity permutation): A001477, 1: A082347, 2: A057508, 3: A131142, 4: A131148, 5: A131146, 6: A131144, 7: A131173, 8: A131170, 9: A131154, 10: A131152, 11: A131150, 12: A057504, 13: A131164, 14: A131166, 15: A069767, 16: A131168, 17: A131172, 18: A131156, 19: A131158, 20: A131162, 21: A131160. Other rows: row 169: A130359, 3608: A130339, 3617: A057509, 65167: A074685.
See also tables A089840, A122200, A122201-A122204, A122283-A122284, A122285-A122288, A122289-A122290, A130400-A130403. As a sequence differs from A122285 for the first time at n=92, where a(n)=17, while A122285(n)=18.

A122200 Signature permutations of RIBS-transformations of non-recursive Catalan automorphisms in table A089840.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 2, 1, 0, 4, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0, 6, 5, 4, 3, 2, 1, 0, 7, 6, 5, 4, 3, 2, 1, 0, 8, 8, 6, 5, 4, 3, 2, 1, 0, 9, 7, 7, 6, 5, 4, 3, 2, 1, 0, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 13, 13, 11, 10, 9, 8
Offset: 0

Views

Author

Antti Karttunen, Sep 01 2006

Keywords

Comments

Row n is the signature permutation of the Catalan automorphism which is obtained from the n-th nonrecursive automorphism in the table A089840 with the recursion scheme "RIBS".
In this recursion scheme the given automorphism is applied to all (toplevel) subtrees of the Catalan structure, when it is interpreted as a general tree. Permutations in this table form a countable group, which is isomorphic with the group in A089840. (The RIBS transformation gives the group isomorphism.)
Furthermore, row n of this table is also found as the row A123694(n) in tables A122203 and A122204. If the count of fixed points of the automorphism A089840[n] is given by sequence f, then the count of fixed points of the automorphism A089840[A123694(n)] is given by CONV(f,A000108) (where CONV stands for convolution) and the count of fixed points of the automorphism A122200[n] by INVERT(RIGHT(f)).
The associated Scheme-procedures RIBS and !RIBS can be used to obtain such a transformed automorphism from any constructively or destructively implemented automorphism.
This sequence agrees with A025581 in its initial terms, but then diverges from it. - Antti Karttunen, May 11 2008

References

  • Antti Karttunen, paper in preparation, draft available by e-mail.

Crossrefs

Row 0 (identity permutation): A001477, row 1: A122282. See also tables A089840, A122201-A122204, A122283-A122284, A122285-A122288, A122289-A122290.

Programs

  • Scheme
    (define (RIBS foo) (lambda (s) (map foo s)))
    (define (!RIBS foo!) (letrec ((bar! (lambda (s) (cond ((pair? s) (foo! (car s)) (bar! (cdr s)))) s))) bar!))

A089850 Involution of natural numbers induced by Catalan automorphism *A089850 acting on the binary trees/parenthesizations encoded by A014486/A063171.

Original entry on oeis.org

0, 1, 2, 3, 5, 4, 6, 7, 8, 12, 13, 11, 9, 10, 15, 14, 16, 17, 18, 19, 20, 21, 22, 31, 32, 34, 35, 36, 30, 33, 28, 23, 24, 29, 25, 26, 27, 40, 41, 39, 37, 38, 43, 42, 44, 45, 46, 47, 48, 49, 50, 52, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 87, 88, 90, 91, 92, 96, 97, 99
Offset: 0

Views

Author

Antti Karttunen, Nov 29 2003

Keywords

Comments

This automorphism effects the following transformation on the unlabeled rooted plane binary trees (letters A, B, C refer to arbitrary subtrees located on those nodes and () stands for an implied terminal node.)
...B...C...........C...B
....\./.............\./
.A...x....-->....A...x.................A..().........A...()..
..\./.............\./...................\./....-->....\./...
...x...............x.....................x.............x....
(a . (b . c)) -> (a . (c . b)) ____ (a . ()) ---> (a . ())
In terms of S-expressions, this automorphism swaps cadr and cddr of an S-exp if its length > 1.
Look at the example in A069770 to see how this will produce the given sequence of integers.

Crossrefs

a(n) = A069770(A089859(n)) = A089863(A069770(n)) = A057163(A089854(A057163(n))). Row 3 of A089840. Row 3771 of A122203 and row 3677 of A122204.
Number of cycles: A073191. Number of fixed points: A073190. Max. cycle size & LCM of all cycle sizes: A046698 (in each range limited by A014137 and A014138).

Extensions

The new mail-address, a graphical explanation and constructive implementation of Scheme-function (*A089850) added by Antti Karttunen, Jun 04 2011

A153832 Atavistic Index Sequence to A089840 computed for ENIPS.

Original entry on oeis.org

0, 15, 3617, 3677, 3690, 3721, 3744
Offset: 0

Views

Author

Antti Karttunen, Jan 07 2009

Keywords

Comments

Recursive transformation ENIPS for Catalan bijections has a well-defined inverse (see the definition & comments at A122204). For all Catalan bijections in A089840 that inverse produces a bijection which is itself in A089840. This sequence gives the indices to those positions where each ("primitive", non-recursive bijection) of A089840(n) occurs "atavistically" amongst the more complex recursive bijections in A122204. I.e. A122204(a(n)) = A089840(n). Similarly, other "atavistic forms" resurface as: A122287(a(n)) = A122201(n), A122286(a(n)) = A122203(n) and A122202(a(n)) = A122284(n). See also comments at A153833.
There exists similar atavistic index sequences computed for FORK (A122201) and KROF (A122202). Both start as 0,1654720,... (see A129604). This implies that regardless of how complex recursive derivations from A089840 one forms by repeatedly applying SPINE, ENIPS, FORK and/or KROF in some order (finite number of times), all the original primitive non-recursive elements of A089840 will eventually appear at some positions.
Other known terms: a(12)=65167, a(13)=65178, a(14)=65236, a(15)=169, a(16)=65302, a(22)-a(44) = 1656351, 1656576, 1656777, 1656628, 1656704, 1659507, 1659538, 1659653, 1659798, 1659685, 1659830, 1660155, 1660582, 1660439, 1660476, 1660621, 1660196, 1661073, 1660930, 1660859, 1661004, 1661287, 1661360.

Crossrefs

Formula

a(n) = A089839bi(n,A153834(A089843(n))).

A153833 Atavistic Index Sequence to A089840 computed for SPINE.

Original entry on oeis.org

0, 21, 3613, 3771, 3906, 3929, 3783
Offset: 0

Views

Author

Antti Karttunen, Jan 07 2009

Keywords

Comments

Recursive transformation SPINE for Catalan bijections has a well-defined inverse (see the definition & comments at A122203). For all Catalan bijections in A089840 that inverse produces a bijection which is itself in A089840. This sequence gives the indices to those positions where each ("primitive", non-recursive bijection) of A089840(n) occurs "atavistically" amongst the more complex recursive bijections in A122203. I.e. A122203(a(n)) = A089840(n). Similarly, other "atavistic forms" resurface as: A122288(a(n)) = A122202(n), A122285(a(n)) = A122204(n) and A122201(a(n)) = A122283(n). See also comments at A153832.
Other known terms: a(17)-a(44): 65352, 65359, 65604, 65739, 251, 1656303, 1656426, 1656552, 1656628, 1656479, 1661655, 1661816, 1666720, 1684006, 1684221, 1667042, 1667007, 1684152, 1661799, 1661676, 1666759, 1684081, 1684437, 1667151, 1684509, 1667187, 1661961, 1661944.

Crossrefs

Formula

a(n) = A089839bi(A153834(A089843(n)),n)

A127285 Signature-permutation of a Catalan automorphism: SPINE-transformation of *A057508.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 5, 7, 8, 9, 14, 10, 16, 19, 11, 15, 12, 17, 18, 13, 20, 21, 22, 23, 37, 25, 42, 51, 24, 38, 26, 44, 47, 27, 53, 56, 60, 28, 39, 29, 43, 52, 30, 40, 31, 45, 46, 32, 48, 49, 50, 33, 41, 34, 54, 55, 35, 57, 58, 59, 36, 61, 62, 63, 64, 65, 107, 70, 121, 149, 66
Offset: 0

Views

Author

Antti Karttunen, Jan 16 2007

Keywords

Comments

SPINE-transformation is explained in A122203. This automorphism permutes the top-level of a list of even length (1 ... 2n) as (2n 1 2n-1 2 2n-3 3 ... n+1 n) and when applied to a list of odd length (1 .. 2n+1), permutes it as (2n+1 1 2n 2 2n-1 3 ... n n+1). Used to construct A127287 and A127289.

Crossrefs

Inverse: A127286. a(n) = A127287(A057508(n)).

A129608 Signature-permutation of a Catalan automorphism: swap the two rightmost subtrees of general trees.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 5, 7, 8, 9, 11, 10, 16, 19, 14, 15, 12, 17, 18, 13, 20, 21, 22, 23, 25, 24, 30, 33, 28, 29, 26, 44, 47, 27, 53, 56, 60, 37, 39, 38, 43, 52, 42, 40, 31, 45, 46, 32, 48, 49, 50, 51, 41, 34, 54, 55, 35, 57, 58, 59, 36, 61, 62, 63, 64, 65, 67, 66, 72, 75, 70, 71
Offset: 0

Views

Author

Antti Karttunen, May 22 2007

Keywords

Comments

This self-inverse automorphism is obtained as either SPINE(*A129607) or ENIPS(*A129607). See the definitions given in A122203 and A122204.

Crossrefs

A129608. a(n) = A057508(A072796(A057508(n))) = A057164(A072796(A057164(n))). Row 3608 of A122203 and A122204.

A129612 Signature-permutation of a Catalan automorphism, row 251 of A089840.

Original entry on oeis.org

0, 1, 3, 2, 7, 8, 6, 4, 5, 17, 18, 20, 21, 22, 16, 19, 14, 9, 10, 15, 11, 13, 12, 45, 46, 48, 49, 50, 54, 55, 57, 58, 59, 61, 62, 63, 64, 44, 47, 53, 56, 60, 42, 51, 37, 23, 24, 38, 25, 26, 27, 43, 52, 39, 28, 29, 41, 33, 35, 36, 40, 30, 34, 31, 32, 129, 130, 132, 133, 134
Offset: 0

Views

Author

Antti Karttunen, May 22 2007

Keywords

Comments

Automorphism *A089863 = SPINE(*A129612). See the definition given in A122203.

Crossrefs

Inverse: A129611. Differs from A082345 for the first time at n=49, where A082345(49)=27, while a(49)=26.

A130339 Signature permutation of a Catalan automorphism: swap the two rightmost subtrees of general trees, if the root degree (A057515(n)) is even.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 5, 7, 8, 9, 10, 11, 16, 19, 14, 15, 12, 17, 18, 13, 20, 21, 22, 23, 25, 24, 26, 27, 28, 29, 30, 44, 47, 33, 53, 56, 60, 37, 38, 39, 43, 52, 42, 40, 31, 45, 46, 32, 48, 49, 50, 51, 41, 34, 54, 55, 35, 57, 58, 59, 36, 61, 62, 63, 64, 65, 66, 67, 72, 75, 70, 71
Offset: 0

Views

Author

Antti Karttunen, Jun 05 2007

Keywords

Comments

This self-inverse automorphism is obtained as either SPINE(*A129608) or ENIPS(*A129608). See the definitions given in A122203 and A122204.

Crossrefs

Cf. a(n) = A057508(A130340(A057508(n))) = A057164(A130340(A057164(n))). Row 3608 of A122285 and A122286. a(n) = A129608(n), if A057515(n) mod 2 = 0, otherwise a(n)=n.

A130936 Signature permutation of a Catalan automorphism: row 2 of A130403.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 6, 8, 9, 10, 12, 11, 13, 17, 18, 16, 14, 15, 20, 21, 19, 22, 23, 24, 26, 25, 27, 31, 32, 30, 28, 29, 34, 35, 33, 36, 45, 46, 48, 49, 50, 44, 47, 42, 37, 38, 43, 40, 39, 41, 54, 55, 57, 58, 59, 53, 56, 51, 52, 61, 62, 63, 60, 64, 65, 66, 68, 67, 69, 73, 74
Offset: 0

Views

Author

Antti Karttunen, Jun 11 2007

Keywords

Comments

The signature-permutation of the Catalan automorphism which is derived from *A069776 with recursion schema SPINE (see A122203 for the definition).

Crossrefs

Inverse: A130935.
Previous Showing 31-40 of 47 results. Next