cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 35 results. Next

A057505 Signature-permutation of a Catalan Automorphism: Donaghey's map M acting on the parenthesizations encoded by A014486.

Original entry on oeis.org

0, 1, 3, 2, 8, 7, 5, 6, 4, 22, 21, 18, 20, 17, 13, 12, 15, 19, 16, 10, 11, 14, 9, 64, 63, 59, 62, 58, 50, 49, 55, 61, 57, 46, 48, 54, 45, 36, 35, 32, 34, 31, 41, 40, 52, 60, 56, 43, 47, 53, 44, 27, 26, 29, 33, 30, 38, 39, 51, 42, 24, 25, 28, 37, 23, 196, 195, 190, 194, 189
Offset: 0

Views

Author

Antti Karttunen, Sep 03 2000

Keywords

Comments

This is equivalent to map M given by Donaghey on page 81 of his paper "Automorphisms on ..." and also equivalent to the transformation procedure depicted in the picture (23) of Donaghey-Shapiro paper.
This can be also considered as a "more recursive" variant of A057501 or A057503 or A057161.

References

  • D. E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 4: Generating All Trees--History of Combinatorial Generation, vi+120pp. ISBN 0-321-33570-8 Addison-Wesley Professional; 1ST edition (Feb 06, 2006).

Crossrefs

Inverse: A057506.
The 2nd, 3rd, 4th, 5th and 6th "power": A071661, A071663, A071665, A071667, A071669.
Other related permutations: A057501, A057503, A057161.
Cycle counts: A057507. Maximum cycle lengths: A057545. LCM's of all cycles: A060114. See A057501 for other Maple procedures.
Row 17 of table A122288.
Cf. A080981 (the "primitive elements" of this automorphism), A079438, A079440, A079442, A079444, A080967, A080968, A080972, A080272, A080292, A083929, A080973, A081164, A123050, A125977, A126312.

Programs

  • Maple
    map(CatalanRankGlobal,map(DonagheysM, A014486)); or map(CatalanRankGlobal,map(DeepRotateTriangularization, A014486));
    DonagheysM := n -> pars2binexp(DonagheysMP(binexp2pars(n)));
    DonagheysMP := h -> `if`((0 = nops(h)),h,[op(DonagheysMP(car(h))),DonagheysMP(cdr(h))]);
    DeepRotateTriangularization := proc(nn) local n,s,z,w; n := binrev(nn); z := 0; w := 0; while(1 = (n mod 2)) do s := DeepRotateTriangularization(BinTreeRightBranch(n))*2; z := z + (2^w)*s; w := w + binwidth(s); z := z + (2^w); w := w + 1; n := floor(n/2); od; RETURN(z); end;

Formula

a(0) = 0, and for n>=1, a(n) = A085201(a(A072771(n)), A057548(a(A072772(n)))). [This recurrence reflects the S-expression implementation given first in the Program section: A085201 is a 2-ary function corresponding to 'append', A072771 and A072772 correspond to 'car' and 'cdr' (known also as first/rest or head/tail in some languages), and A057548 corresponds to unary form of function 'list'].
As a composition of related permutations:
a(n) = A057164(A057163(n)).
a(n) = A057163(A057506(A057163(n))).

A122204 Signature permutations of ENIPS-transformations of non-recursive Catalan automorphisms in table A089840.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 2, 2, 1, 0, 5, 8, 3, 2, 1, 0, 6, 7, 4, 3, 2, 1, 0, 7, 6, 6, 5, 3, 2, 1, 0, 8, 4, 5, 4, 5, 3, 2, 1, 0, 9, 5, 7, 6, 6, 6, 3, 2, 1, 0, 10, 22, 8, 7, 4, 5, 6, 3, 2, 1, 0, 11, 21, 9, 8, 7, 4, 4, 4, 3, 2, 1, 0, 12, 20, 14, 13, 8, 7, 5, 5, 4, 3, 2, 1, 0, 13, 17, 10, 12, 13
Offset: 0

Views

Author

Antti Karttunen, Sep 01 2006, Jun 06 2007

Keywords

Comments

Row n is the signature permutation of the Catalan automorphism which is obtained from the n-th nonrecursive automorphism in the table A089840 with the recursion scheme "ENIPS". In this recursion scheme the algorithm first recurses down to the right-hand side branch of the binary tree, before the given automorphism is applied at its root. This corresponds to the fold-right operation applied to the Catalan structure, interpreted e.g. as a parenthesization or a Lisp-like list, where (lambda (x y) (f (cons x y))) is the binary function given to fold, with 'f' being the given automorphism. The associated Scheme-procedures ENIPS and !ENIPS can be used to obtain such a transformed automorphism from any constructively or destructively implemented automorphism. Each row occurs only once in this table. Inverses of these permutations can be found in table A122203.
Because of the "universal property of folds", the recursion scheme ENIPS has a well-defined inverse, that is, it acts as a bijective mapping on the set of all Catalan automorphisms. Specifically, if g = ENIPS(f), then (f s) = (g (cons (car s) (g^{-1} (cdr s)))), that is, to obtain an automorphism f which gives g when subjected to recursion scheme ENIPS, we compose g with its own inverse applied to the cdr-branch of a S-expression (i.e. the right subtree in the context of binary trees). This implies that for any non-recursive automorphism f in the table A089840, ENIPS^{-1}(f) is also in A089840, which in turn implies that the rows of table A089840 form a (proper) subset of the rows of this table.

References

  • A. Karttunen, paper in preparation, draft available by e-mail.

Crossrefs

Cf. The first 22 rows of this table: row 0 (identity permutation): A001477, 1: A069768, 2: A057510, 3: A130342, 4: A130348, 5: A130346, 6: A130344, 7: A122282, 8: A082340, 9: A130354, 10: A130352, 11: A130350, 12: A057502, 13: A130364, 14: A130366, 15: A069770, 16: A130368, 17: A074686, 18: A130356, 19: A130358, 20: A130362, 21: A130360. Other rows: row 169: A089859, row 253: A123718, row 3608: A129608, row 3613: A072796, row 65167: A074679, row 79361: A123716.

A122201 Signature permutations of FORK-transformations of non-recursive Catalan automorphisms in table A089840.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 2, 2, 1, 0, 5, 8, 3, 2, 1, 0, 6, 7, 4, 3, 2, 1, 0, 7, 6, 6, 5, 3, 2, 1, 0, 8, 5, 5, 4, 5, 3, 2, 1, 0, 9, 4, 7, 6, 6, 6, 3, 2, 1, 0, 10, 22, 8, 7, 4, 5, 6, 3, 2, 1, 0, 11, 21, 9, 8, 7, 4, 4, 4, 3, 2, 1, 0, 12, 20, 11, 12, 8, 7, 5, 5, 4, 3, 2, 1, 0, 13, 18, 14, 13, 12
Offset: 0

Views

Author

Antti Karttunen, Sep 01 2006

Keywords

Comments

Row n is the signature permutation of the Catalan automorphism which is obtained from the n-th nonrecursive automorphism in the table A089840 with the recursion scheme "FORK". In this recursion scheme the given automorphism is first applied at the root of binary tree, before the algorithm recurses down to the both branches (new ones, possibly changed by the given automorphism). I.e. this corresponds to the pre-order (prefix) traversal of a Catalan structure, when it is interpreted as a binary tree. The associated Scheme-procedures FORK and !FORK can be used to obtain such a transformed automorphism from any constructively or destructively implemented automorphism. Each row occurs only once in this table. Inverses of these permutations can be found in table A122202.

References

  • A. Karttunen, paper in preparation, draft available by e-mail.

Crossrefs

The first 22 rows of this table: row 0 (identity permutation): A001477, 1: A057163, 2: A057511, 3: A122341, 4: A122343, 5: A122345, 6: A122347, 7: A122349, 8: A082325, 9: A082360, 10: A122291, 11: A122293, 12: A074681, 13: A122295, 14: A122297, 15: A122353, 16: A122355, 17: A074684, 18: A122357, 19: A122359, 20: A122361, 21: A122301. Other rows: row 4253: A082356, row 65796: A082358, row 79361: A123493.

Programs

  • Scheme
    (define (FORK foo) (letrec ((bar (lambda (s) (let ((t (foo s))) (if (pair? t) (cons (bar (car t)) (bar (cdr t))) t))))) bar))
    (define (!FORK foo!) (letrec ((bar! (lambda (s) (cond ((pair? s) (foo! s) (bar! (car s)) (bar! (cdr s)))) s))) bar!))

A122203 Signature permutations of SPINE-transformations of non-recursive Catalan automorphisms in table A089840.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 2, 2, 1, 0, 5, 7, 3, 2, 1, 0, 6, 8, 4, 3, 2, 1, 0, 7, 6, 6, 5, 3, 2, 1, 0, 8, 5, 5, 4, 5, 3, 2, 1, 0, 9, 4, 7, 6, 6, 6, 3, 2, 1, 0, 10, 17, 8, 7, 4, 5, 6, 3, 2, 1, 0, 11, 18, 9, 8, 7, 4, 4, 4, 3, 2, 1, 0, 12, 20, 11, 12, 8, 7, 5, 5, 4, 3, 2, 1, 0, 13, 21, 14, 13, 12
Offset: 0

Views

Author

Antti Karttunen, Sep 01 2006, Jun 06 2007

Keywords

Comments

Row n is the signature permutation of the Catalan automorphism which is obtained from the n-th nonrecursive automorphism in the table A089840 with the recursion scheme "SPINE". In this recursion scheme the given automorphism is first applied at the root of binary tree, before the algorithm recurses down to the new right-hand side branch. The associated Scheme-procedures SPINE and !SPINE can be used to obtain such a transformed automorphism from any constructively or destructively implemented automorphism. Each row occurs only once in this table. Inverses of these permutations can be found in table A122204.
The recursion scheme SPINE has a well-defined inverse, that is, it acts as a bijective mapping on the set of all Catalan automorphisms. Specifically, if g = SPINE(f), then (f s) = (cond ((pair? s) (let ((t (g s))) (cons (car t) (g^{-1} (cdr t))))) (else s)) that is, to obtain an automorphism f which gives g when subjected to recursion scheme SPINE, we compose g with its own inverse applied to the cdr-branch of a S-expression. This implies that for any non-recursive automorphism f in the table A089840, SPINE^{-1}(f) is also in A089840, which in turn implies that the rows of table A089840 form a (proper) subset of the rows of this table.

References

  • A. Karttunen, paper in preparation, draft available by e-mail.

Crossrefs

Cf. The first 22 rows of this table: row 0 (identity permutation): A001477, 1: A069767, 2: A057509, 3: A130341, 4: A130343, 5: A130345, 6: A130347, 7: A122282, 8: A082339, 9: A130349, 10: A130351, 11: A130353, 12: A074685, 13: A130355, 14: A130357, 15: A130359, 16: A130361, 17: A057501, 18: A130363, 19: A130365, 20: A130367, 21: A069770. Other rows: row 251: A089863, row 253: A123717, row 3608: A129608, row 3613: A072796, row 65352: A074680, row 79361: A123715.

Programs

  • Scheme
    (define (SPINE foo) (letrec ((bar (lambda (s) (let ((t (foo s))) (if (pair? t) (cons (car t) (bar (cdr t))) t))))) bar))
    (define (!SPINE foo!) (letrec ((bar! (lambda (s) (cond ((pair? s) (foo! s) (bar! (cdr s)))) s))) bar!))

A122283 Signature permutations of DEEPEN-transformations of non-recursive Catalan automorphisms in table A089840.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 2, 2, 1, 0, 5, 8, 3, 2, 1, 0, 6, 7, 4, 3, 2, 1, 0, 7, 6, 6, 5, 3, 2, 1, 0, 8, 4, 5, 4, 5, 3, 2, 1, 0, 9, 5, 7, 6, 6, 6, 3, 2, 1, 0, 10, 22, 8, 7, 4, 5, 6, 3, 2, 1, 0, 11, 21, 9, 8, 7, 4, 4, 4, 3, 2, 1, 0, 12, 20, 10, 12, 8, 7, 5, 5, 4, 3, 2, 1, 0, 13, 17, 14, 13, 12
Offset: 0

Views

Author

Antti Karttunen, Sep 01 2006

Keywords

Comments

Row n is the signature permutation of the Catalan automorphism which is obtained from the n-th nonrecursive automorphism in the table A089840 with the recursion scheme "DEEPEN". In this recursion scheme the given automorphism is first applied at the root of general tree, before the algorithm recurses down to all subtrees. I.e., this corresponds to the pre-order (prefix) traversal of a Catalan structure, when it is interpreted as a general tree. The associated Scheme-procedures DEEPEN and !DEEPEN can be used to obtain such a transformed automorphism from any constructively or destructively implemented automorphism. Each row occurs only once in this table. Inverses of these permutations can be found in table A122284.
The recursion scheme FORK (described in A122201) is equivalent to a composition of recursion schemes SPINE (described in A122203) and DEEPEN, i.e., FORK(f) = DEEPEN(SPINE(f)) holds for all Catalan automorphisms f. These recursion schemes have well-defined inverses, that is, they are bijective mappings on the set of all Catalan automorphisms. Thus we can equivalently define that DEEPEN(f) = FORK(SPINE^{-1}(f)). Specifically, if g = SPINE(f), then (f s) = (cond ((pair? s) (let ((t (g s))) (cons (car t) (g^{-1} (cdr t))))) (else s)) that is, to obtain an automorphism f which gives g when subjected to recursion scheme SPINE, we compose g with its own inverse applied to the cdr-branch of a S-expression. This implies that for any non-recursive automorphism f in the table A089840, SPINE^{-1}(f) is also in A089840, which in turn implies that the rows of table A122283 form a (proper) subset of the rows of table A122201. E.g., row 1 of A122283 is row 21 of A122201, row 2 of A122283 is row 3613 of A122201, row 17 of A122283 is row 65352 of A122201, row 21 of A122283 is row 251 of A122201. - Antti Karttunen, May 25 2007

References

  • A. Karttunen, paper in preparation, draft available by e-mail.

Crossrefs

The first 22 rows of this table: row 0 (identity permutation): A001477, 1: A122301, 2: A122300, 3: A122303, 4: A122305, 5: A122307, 6: A122309, 7: A122311, 8: A122313, 9: A122315, 10: A122317, 11: A122319, 12: A122321, 13: A122323, 14: A122325, 15: A122327, 16: A122329, 17: A122331, 18: A122333, 19: A122335, 20: A122337, 21: A122339. See also tables A089840, A122200, A122201-A122204, A122285-A122288, A122289-A122290.

Programs

  • Scheme
    (define (DEEPEN foo) (letrec ((bar (lambda (s) (map bar (foo s))))) bar))
    (define (!DEEPEN foo!) (letrec ((bar! (lambda (s) (foo! s) (for-each bar! s) s))) bar!))

A122284 Signature permutations of NEPEED-transformations of non-recursive Catalan automorphisms in table A089840.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 2, 2, 1, 0, 5, 7, 3, 2, 1, 0, 6, 8, 4, 3, 2, 1, 0, 7, 6, 6, 5, 3, 2, 1, 0, 8, 5, 5, 4, 5, 3, 2, 1, 0, 9, 4, 7, 6, 6, 6, 3, 2, 1, 0, 10, 17, 8, 7, 4, 5, 6, 3, 2, 1, 0, 11, 18, 9, 8, 7, 4, 4, 4, 3, 2, 1, 0, 12, 20, 10, 12, 8, 7, 5, 5, 4, 3, 2, 1, 0, 13, 22, 14, 13, 12
Offset: 0

Views

Author

Antti Karttunen, Sep 01 2006

Keywords

Comments

Row n is the signature permutation of the Catalan automorphism which is obtained from the n-th nonrecursive automorphism in the table A089840 with the recursion scheme "NEPEED". In this recursion scheme the algorithm first recurses down to all subtrees, before the given automorphism is applied at the root of general tree. I.e., this corresponds to the post-order (postfix) traversal of a Catalan structure, when it is interpreted as a general tree. The associated Scheme-procedures NEPEED and !NEPEED can be used to obtain such a transformed automorphism from any constructively or destructively implemented automorphism. Each row occurs only once in this table. Inverses of these permutations can be found in table A122283.
The recursion scheme KROF (described in A122202) is equivalent to a composition of recursion schemes ENIPS (described in A122204) and NEPEED, i.e., KROF(f) = NEPEED(ENIPS(f)) holds for all Catalan automorphisms f. Because of the "universal property of folds", these recursion schemes have well-defined inverses, that is, they are bijective mappings on the set of all Catalan automorphisms. Thus we can equivalently define that NEPEED(f) = KROF(ENIPS^{-1}(f)). Specifically, if g = ENIPS(f), then (f s) = (g (cons (car s) (g^{-1} (cdr s)))), that is, to obtain an automorphism f which gives g when subjected to recursion scheme ENIPS, we compose g with its own inverse applied to the cdr-branch of a S-expression (i.e., the right subtree in the context of binary trees). This implies that for any non-recursive automorphism f in the table A089840, ENIPS^{-1}(f) is also in A089840, which in turn implies that the rows of table A122284 form a (proper) subset of the rows of table A122202. E.g., row 1 of A122284 is row 15 of A122202, row 2 of A122284 is row 3617 of A122202, row 12 of A122284 is row 65167 of A122202, row 15 of A122284 is row 169 of A122202. - Antti Karttunen, May 25 2007
The recursion scheme FORK (described in A122201) is equivalent to a composition of recursion schemes SPINE (described in A122203) and DEEPEN, i.e., FORK(f) = DEEPEN(SPINE(f)) holds for all Catalan automorphisms f. These recursion schemes have well-defined inverses, that is, they are bijective mappings on the set of all Catalan automorphisms. Thus we can equivalently define that DEEPEN(f) = FORK(SPINE^{-1}(f)). Specifically, if g = SPINE(f), then (f s) = (cond ((pair? s) (let ((t (g s))) (cons (car t) (g^{-1} (cdr t))))) (else s)) that is, to obtain an automorphism f which gives g when subjected to recursion scheme SPINE, we compose g with its own inverse applied to the cdr-branch of a S-expression. This implies that for any non-recursive automorphism f in the table A089840, SPINE^{-1}(f) is also in A089840, which in turn implies that the rows of table A122283 form a (proper) subset of the rows of table A122201. E.g., row 1 of A122283 is row 21 of A122201, row 2 of A122283 is row 3613 of A122201, row 17 of A122283 is row 65352 of A122201, row 21 of A122283 is row 251 of A122201. - Antti Karttunen, May 25 2007

References

  • A. Karttunen, paper in preparation, draft available by e-mail.

Crossrefs

The first 22 rows of this table: row 0 (identity permutation): A001477, 1: A122302, 2: A122300, 3: A122304, 4: A122310, 5: A122308, 6: A122306, 7: A122312, 8: A122314, 9: A122320, 10: A122318, 11: A122316, 12: A122332, 13: A122334, 14: A122336, 15: A122340, 16: A122338, 17: A122322, 18: A122324, 19: A122326, 20: A122330, 21: A122328. See also tables A089840, A122200, A122201-A122204, A122285-A122288, A122289-A122290.

Programs

  • Scheme
    (define (NEPEED foo) (letrec ((bar (lambda (s) (foo (map bar s))))) bar))
    (define (!NEPEED foo!) (letrec ((bar! (lambda (s) (for-each bar! s) (foo! s) s))) bar!))

A122202 Signature permutations of KROF-transformations of non-recursive Catalan automorphisms in table A089840.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 2, 2, 1, 0, 5, 8, 3, 2, 1, 0, 6, 7, 4, 3, 2, 1, 0, 7, 6, 6, 5, 3, 2, 1, 0, 8, 5, 5, 4, 5, 3, 2, 1, 0, 9, 4, 7, 6, 6, 6, 3, 2, 1, 0, 10, 22, 8, 7, 4, 5, 6, 3, 2, 1, 0, 11, 21, 9, 8, 7, 4, 4, 4, 3, 2, 1, 0, 12, 20, 14, 13, 8, 7, 5, 5, 4, 3, 2, 1, 0, 13, 18, 10, 12, 13
Offset: 0

Views

Author

Antti Karttunen, Sep 01 2006

Keywords

Comments

Row n is the signature permutation of the Catalan automorphism which is obtained from the n-th nonrecursive automorphism in the table A089840 with the recursion scheme "KROF". In this recursion scheme the algorithm first recurses down to the both branches, before the given automorphism is applied at the root of binary tree. I.e., this corresponds to the post-order (postfix) traversal of a Catalan structure, when it is interpreted as a binary tree. The associated Scheme-procedures KROF and !KROF can be used to obtain such a transformed automorphism from any constructively or destructively implemented automorphism. Each row occurs only once in this table. Inverses of these permutations can be found in table A122201.
The recursion scheme KROF is equivalent to a composition of recursion schemes ENIPS (described in A122204) and NEPEED (described in A122284), i.e., KROF(f) = NEPEED(ENIPS(f)) holds for all Catalan automorphisms f. Because of the "universal property of folds", these recursion schemes have well-defined inverses, that is, they are bijective mappings on the set of all Catalan automorphisms. Specifically, if g = KROF(f), then (f s) = (g (cons (g^{-1} (car s)) (g^{-1} (cdr s)))), that is, to obtain an automorphism f which gives g when subjected to recursion scheme KROF, we compose g with its own inverse applied to the car- and cdr-branches of a S-expression (i.e., the left and right subtrees in the context of binary trees). This implies that for any nonrecursive automorphism f of the table A089840, KROF^{-1}(f) is also in A089840, which in turn implies that all rows of table A089840 can be found also in table A122202 (e.g., row 1 of A089840 (A069770) occurs here as row 1654720) and furthermore, the table A122290 contains the rows of both tables, A122202 and A089840 as its subsets. Similar notes apply to recursion scheme FORK described in A122201. - Antti Karttunen, May 25 2007

References

  • A. Karttunen, paper in preparation, draft available by e-mail.

Crossrefs

The first 22 rows of this table: row 0 (identity permutation): A001477, 1: A057163, 2: A057512, 3: A122342, 4: A122348, 5: A122346, 6: A122344, 7: A122350, 8: A082326, 9: A122294, 10: A122292, 11: A082359, 12: A074683, 13: A122358, 14: A122360, 15: A122302, 16: A122362, 17: A074682, 18: A122296, 19: A122298, 20: A122356, 21: A122354. Other rows: row 4069: A082355, row 65518: A082357, row 79361: A123494.
Row 1654720: A069770.

A122285 Signature permutations of ENIPS-transformations of Catalan automorphisms in table A122203.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 2, 2, 1, 0, 5, 8, 3, 2, 1, 0, 6, 7, 4, 3, 2, 1, 0, 7, 6, 6, 5, 3, 2, 1, 0, 8, 5, 5, 4, 5, 3, 2, 1, 0, 9, 4, 7, 6, 6, 6, 3, 2, 1, 0, 10, 22, 8, 7, 4, 5, 6, 3, 2, 1, 0, 11, 21, 9, 8, 7, 4, 4, 4, 3, 2, 1, 0, 12, 20, 14, 13, 8, 7, 5, 5, 4, 3, 2, 1, 0, 13, 18, 11, 12, 13
Offset: 0

Views

Author

Antti Karttunen, Sep 01 2006, Jun 20 2007

Keywords

Comments

Row n is the signature permutation of the Catalan automorphism which is obtained from the n-th automorphism in the table A122203 with the recursion scheme "ENIPS", or equivalently row n is obtained as ENIPS(SPINE(n-th row of A089840)). See A122203 and A122204 for the description of SPINE and ENIPS. Each row occurs only once in this table. Inverses of these permutations can be found in table A122286. This table contains also all the rows of A122204 and A089840.

References

  • A. Karttunen, paper in preparation, draft available by e-mail.

Crossrefs

The first 22 rows of this table: row 0 (identity permutation): A001477, 1: A082348, 2: A057508, 3: A131141, 4: A131143, 5: A131145, 6: A131147, 7: A131173, 8: A131169, 9: A131149, 10: A131151, 11: A131153, 12: A131171, 13: A131155, 14: A131157, 15: A131159, 16: A131161, 17: A057503, 18: A131163, 19: A131165, 20: A131167, 21: A069768. Other rows: row 251: A130360, 3608: A130339, 3613: A057510, 65352: A074686.
See also tables A089840, A122200, A122201-A122204, A122283-A122284, A122286-A122288, A122289-A122290, A130400-A130403. As a sequence differs from A122286 for the first time at n=92, where a(n)=18, while A122286(n)=17.

A069768 Signature-permutation of Catalan bijection "Knack".

Original entry on oeis.org

0, 1, 3, 2, 8, 7, 6, 4, 5, 22, 21, 20, 17, 18, 19, 16, 14, 9, 10, 15, 11, 12, 13, 64, 63, 62, 58, 59, 61, 57, 54, 45, 46, 55, 48, 49, 50, 60, 56, 53, 44, 47, 51, 42, 37, 23, 24, 38, 25, 26, 27, 52, 43, 39, 28, 29, 40, 30, 31, 32, 41, 33, 34, 35, 36, 196, 195, 194, 189, 190
Offset: 0

Views

Author

Antti Karttunen, Apr 16 2002; entry revised Dec 20 2008

Keywords

Comments

This automorphism of binary trees first swaps the left and right subtree of the root and then proceeds recursively to the (new) left subtree, to do the same operation there. This is one of those Catalan bijections which extend to a unique automorphism of the infinite binary tree, which in this case is A153142. See further comments there and in A153141.
This bijection, Knack, is a ENIPS-transformation of the simple swap: ENIPS(*A069770) (i.e., row 1 of A122204). Furthermore, Knack and Knick (the inverse, A069767) have a special property, that FORK and KROF transforms (explained in A122201 and A122202) transform them to their own inverses, i.e., to each other: FORK(Knick) = KROF(Knick) = Knack and FORK(Knack) = KROF(Knack) = Knick, thus this occurs also as row 1 in A122288 and naturally, the double-fork fixes both, e.g., FORK(FORK(Knack)) = Knack.
Note: the name in Finnish is "Naks".

References

  • A. Karttunen, paper in preparation.

Crossrefs

Inverse permutation: "Knick", A069767. "n-th powers" (i.e. n-fold applications), from n=2 to 6: A073291, A073293, A073295, A073297, A073299.
In range [A014137(n-1)..A014138(n-1)] of this permutation, the number of cycles is A073431, number of fixed points: A036987 (Fixed points themselves: A084108), Max. cycle size & LCM of all cycle sizes: A011782. See also: A074080.
A127302(a(n)) = A127302(n) for all n. a(n) = A057162(A057508(n)) = A069769(A057162(n))
Row 1 of A122204 and A122288, row 21 of A122285 and A130402, row 8 of A073200.
See also bijections A073287, A082346, A082347, A082350, A130342.

A122286 Signature permutations of SPINE-transformations of Catalan automorphisms in table A122204.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 2, 2, 1, 0, 5, 8, 3, 2, 1, 0, 6, 7, 4, 3, 2, 1, 0, 7, 6, 6, 5, 3, 2, 1, 0, 8, 5, 5, 4, 5, 3, 2, 1, 0, 9, 4, 7, 6, 6, 6, 3, 2, 1, 0, 10, 22, 8, 7, 4, 5, 6, 3, 2, 1, 0, 11, 21, 9, 8, 7, 4, 4, 4, 3, 2, 1, 0, 12, 20, 14, 13, 8, 7, 5, 5, 4, 3, 2, 1, 0, 13, 17, 11, 12, 13
Offset: 0

Views

Author

Antti Karttunen, Sep 01 2006, Jun 20 2007

Keywords

Comments

Row n is the signature permutation of the Catalan automorphism which is obtained from the n-th automorphism in the table A122204 with the recursion scheme "SPINE", or equivalently row n is obtained as SPINE(ENIPS(n-th row of A089840)). See A122203 and A122204 for the description of SPINE and ENIPS. Each row occurs only once in this table. Inverses of these permutations can be found in table A122285. This table contains also all the rows of A122203 and A089840.

References

  • A. Karttunen, paper in preparation, draft available by e-mail.

Crossrefs

The first 22 rows of this table: row 0 (identity permutation): A001477, 1: A082347, 2: A057508, 3: A131142, 4: A131148, 5: A131146, 6: A131144, 7: A131173, 8: A131170, 9: A131154, 10: A131152, 11: A131150, 12: A057504, 13: A131164, 14: A131166, 15: A069767, 16: A131168, 17: A131172, 18: A131156, 19: A131158, 20: A131162, 21: A131160. Other rows: row 169: A130359, 3608: A130339, 3617: A057509, 65167: A074685.
See also tables A089840, A122200, A122201-A122204, A122283-A122284, A122285-A122288, A122289-A122290, A130400-A130403. As a sequence differs from A122285 for the first time at n=92, where a(n)=17, while A122285(n)=18.
Previous Showing 21-30 of 35 results. Next