cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A211966 Number of binary sequences of length 2n and curling number 1.

Original entry on oeis.org

2, 6, 20, 74, 286, 1124, 4460, 17768, 70930, 283440, 1133200, 4531686, 18124522, 72493652, 289965744, 1159845258, 4639345612, 18557311624, 74229104872, 296916136278, 1187663978718, 4750654782144, 19002616863186, 76010462922018
Offset: 1

Views

Author

Omar E. Pol, Nov 28 2012

Keywords

Comments

Equivalently, number of binary sequences of length 2n with no initial repeats (see A122536).

Crossrefs

Bisection of A122536.

Formula

a(n) = 2*A093371(2n) = A093371(2n+1) = A211965(n+1)/2.

A216957 a(1)=2; for n > 1, a(n) = 2^(n-2) + (1/(2n-2)) * Sum_{ d divides n-1 } phi(2d)*2^((n-1)/d).

Original entry on oeis.org

2, 2, 4, 6, 12, 20, 40, 74, 148, 286, 568, 1118, 2228, 4412, 8788, 17480, 34836, 69392, 138388, 275942, 550560, 1098516, 2192572, 4376666, 8738324, 17448308, 34845304, 69594398, 139011816, 277691852, 554767744, 1108378658, 2214594580, 4425117884, 8842583584, 17670722600, 35314182976, 70576759892, 141055781836
Offset: 1

Views

Author

N. J. A. Sloane, Sep 26 2012

Keywords

Crossrefs

Different from, but easily confused with, A003000 and A122536.

Programs

  • Maple
    with(numtheory);
    f:=n-> if n=1 then 2 else 2^(n-2) + (1/(2*n-2)) * add(phi(2*d)*2^((n-1)/d), d in divisors(n-1)); fi;

A217212 Number of sequences of 2's and 3's of length n with curling number 3.

Original entry on oeis.org

0, 0, 2, 2, 4, 10, 20, 38, 82, 164, 328, 660, 1320, 2640, 5304, 10596, 21192, 42424, 84848, 169668, 339428, 678856, 1357712, 2715548, 5431096, 10862192, 21724746, 43449380, 86898760, 173798220, 347596440, 695192670
Offset: 1

Views

Author

N. J. A. Sloane, Oct 01 2012

Keywords

Crossrefs

Column 3 of A216955. Cf. A122536, A217211.
Previous Showing 21-23 of 23 results.