cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-32 of 32 results.

A256279 Expansion of psi(q) * chi(-q^3) * phi(-q^9) in powers of q where phi(), psi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 0, 0, -1, 0, 0, 0, 0, -4, -2, 0, 0, 2, 0, 0, -1, 0, 4, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 4, 2, 0, 0, -2, 0, 0, 0, 0, -8, 0, 0, 0, 1, 0, 0, -2, 0, 0, 0, 0, 0, -2, 0, 0, 2, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 0, 0, 0, 0, 0, -4, -2
Offset: 0

Views

Author

Michael Somos, Jun 02 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + q - q^4 - 4*q^9 - 2*q^10 + 2*q^13 - q^16 + 4*q^18 + 3*q^25 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q^(1/2)] / (2 q^(1/8)) QPochhammer[ q^3, q^6] EllipticTheta[ 4, 0, q^9], {q, 0, n}];
  • PARI
    {a(n) = if( n<1, n==0, (-1)^(n\3) * (n%3<2) * sumdiv(n, d, [0, 1, 2, -1][d%4 + 1] * if(d%9, 1, 4) * (-1)^((d%8==6) + n+d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^3 + A) * eta(x^9 + A)^2 / (eta(x + A) * eta(x^6 + A) * eta(x^18 + A)), n))};

Formula

Expansion of eta(q^2)^2 * eta(q^3) * eta(q^9)^2 / (eta(q) * eta(q^6) * eta(q^18)) in powers of q.
Euler transform of period 18 sequence [ 1, -1, 0, -1, 1, -1, 1, -1, -2, -1, 1, -1, 1, -1, 0, -1, 1, -2, ...].
a(n) = (-1)^n * A256269(n). a(4*n) = A256269(n).
a(3*n + 2) = a(4*n + 3) = 0. a(3*n + 1) = A258277(n). a(6*n + 4) = - A122856(n). a(12*n + 1) = A002175(n). a(12*n + 4) = - A122865(n).

A281640 Expansion of x * f(x, x) * f(x^5, x^25) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 2, 0, 0, 2, 1, 2, 0, 0, 4, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 3, 2, 0, 0, 2, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 1, 6, 0, 0, 2, 0, 0, 0, 0, 4, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 1, 4, 0, 0, 2, 0, 2
Offset: 1

Views

Author

Michael Somos, Jan 25 2017

Keywords

Examples

			G.f. = x + 2*x^2 + 2*x^5 + x^6 + 2*x^7 + 4*x^10 + 2*x^15 + 2*x^17 + 2*x^22 + ...
G.f. = q^5 + 2*q^8 + 2*q^17 + q^20 + 2*q^23 + 4*q^32 + 2*q^47 + 2*q^53 + 2*q^65 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, DivisorSum[ 3 n + 2, KroneckerSymbol[ -15, #] (-1)^Boole[Mod[#, 4] == 2] &]];
    a[ n_] := SeriesCoefficient[ x EllipticTheta[ 3, 0, x] QPochhammer[ -x^5, x^30] QPochhammer[ -x^25, x^30] QPochhammer[ x^30], {x, 0, n}];
  • PARI
    {a(n) = if( n<1, 0, sumdiv(3*n + 2, d, kronecker(-15, d) * (-1)^(d%4==2) ))};
    
  • PARI
    {a(n) = if( n<1, 0, my(m = 3*n + 2, s, x); for(y=1, sqrtint(m\5), if( y%3 && issquare((m - 5*y^2)\3, &x), s += (x>0) + 1)); s)};
    
  • PARI
    {a(n) = if( n<1, 0, my(A); n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^10 + A)^2 * eta(x^15 + A) * eta(x^60 + A) / (eta(x + A)^2 * eta(x^4 + A)^2 * eta(x^5 + A) * eta(x^20 + A) * eta(x^30 + A)), n))};

Formula

G.f.: x * (Sum_{k in Z} x^k^2) * (Sum_{k in Z} x^(15*k^2 - 10*k)).
G.f.: x * Product_{k>0} (1 + x^(2*k-1))^2 * (1 - x^(2*k)) * (1 + x^(30*k-25)) * (1 + x^(30*k-5)) * (1 - x^(30*k)).
a(n) = A122855(3*n + 2) = A260649(3*n + 2) = A122856(6*n + 4) = A258276(6*n + 4).
a(n) = - A140727(3*n + 2). 2 * a(n) = A192323(3*n + 2).
Previous Showing 31-32 of 32 results.