cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 51 results. Next

A288154 Numbers k such that k!6 + 9 is prime, where k!6 is the sextuple factorial number (A085158 ).

Original entry on oeis.org

2, 4, 14, 28, 34, 46, 50, 52, 86, 100, 106, 140, 166, 170, 208, 242, 338, 344, 412, 1360, 2024, 2948, 3650, 5608, 5744, 7618, 8410, 8834, 11872, 12514, 13636, 18742, 20846, 29750, 31312
Offset: 1

Views

Author

Robert Price, Jun 05 2017

Keywords

Comments

Corresponding primes are: 11, 13, 233, 394249, 13404169, 24663654409, 311607296009, ...
a(36) > 50000.
Terms > 50 correspond to probable primes.

Examples

			14!6 + 9 = 14*8*2 + 9 = 233 is prime, so 14 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 6] + 9] &]

A288155 Numbers k such that k!6 + 12 is prime, where k!6 is the sextuple factorial number (A085158 ).

Original entry on oeis.org

0, 1, 5, 7, 11, 13, 17, 19, 23, 25, 41, 67, 71, 101, 109, 151, 163, 181, 233, 241, 265, 355, 433, 563, 767, 997, 1465, 1681, 1861, 1913, 2411, 2539, 2777, 13433, 22355, 30895, 44605
Offset: 1

Views

Author

Robert Price, Jun 05 2017

Keywords

Comments

Corresponding primes are: 13, 13, 17, 19, 67, 103, 947, 1741, 21517, 43237, 894930587, ...
a(37) > 50000.
Terms > 41 correspond to probable primes.

Examples

			11!6 + 12 = 11*5 + 12 = 67 is prime, so 11 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 6] + 12] &]
    Select[Range[0, 45000], PrimeQ[Times @@ Range[#, 1, -6] + 12] &] (* Harvey P. Dale, Jul 09 2020 *)

A288444 Numbers k such that k!6 + 16 is prime, where k!6 is the sextuple factorial number (A085158 ).

Original entry on oeis.org

1, 3, 7, 9, 11, 13, 15, 21, 23, 35, 37, 39, 47, 49, 59, 111, 117, 163, 287, 311, 601, 635, 855, 895, 2455, 2929, 3369, 7147, 10367, 12311, 13093, 13611, 14431, 17305, 27331
Offset: 1

Views

Author

Robert Price, Jun 09 2017

Keywords

Comments

Corresponding primes are: 17, 19, 23, 43, 71, 107, 421, 8521, 21521, 21827591, 49579091, 295540261, 42061737041, 104463111041, ...
a(36) > 50000.
Terms > 49 correspond to probable primes.

Examples

			11!6 + 16 = 11*5 + 16 = 71 is prime, so 11 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 6] + 16] &]
    Select[Range[1000],PrimeQ[Times@@Range[#,1,-6]+16]&] (* The program generates the first 24 terms of the sequence. To generate more, increase the Range constant. *)

A288445 Numbers k such that k!6 + 18 is prime, where k!6 is the sextuple factorial number (A085158 ).

Original entry on oeis.org

1, 5, 11, 13, 17, 19, 23, 31, 37, 41, 49, 83, 115, 161, 205, 617, 683, 769, 799, 1117, 1151, 1685, 1697, 1951, 2173, 3619, 3647, 6229, 6463, 6613, 9827, 12985, 15721, 16933, 22579, 25181, 38869, 48755
Offset: 1

Views

Author

Robert Price, Jun 09 2017

Keywords

Comments

Corresponding primes are: 19, 23, 73, 109, 953, 1747, 21523, 1339993, 49579093, 894930593, ...
a(39) > 50000.
Terms > 49 correspond to probable primes.

Examples

			11!6 + 18 = 11*5 + 18 = 73 is prime, so 11 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 6] + 18] &]

A288446 Numbers k such that k!6 + 24 is prime, where k!6 is the sextuple factorial number (A085158 ).

Original entry on oeis.org

5, 7, 11, 19, 23, 29, 53, 67, 71, 79, 109, 121, 275, 707, 725, 1345, 1961, 2221, 2477, 2765, 5557, 5779, 7423, 11587, 22495, 25063, 28795, 43783
Offset: 1

Views

Author

Robert Price, Jun 09 2017

Keywords

Comments

Corresponding primes are: 29, 31, 79, 1753, 21529, 623669, 2229272062349, ...
a(29) > 50000.
Terms > 29 correspond to probable primes.

Examples

			11!6 + 24 = 11*5 + 24 = 79 is prime, so 11 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 6] + 24] &]

A288447 Numbers k such that k!6 + 27 is prime, where k!6 is the sextuple factorial number (A085158 ).

Original entry on oeis.org

2, 4, 8, 10, 14, 20, 22, 26, 32, 40, 110, 116, 142, 148, 200, 370, 854, 1166, 1594, 2164, 4424, 5942, 9086, 13300, 15224, 20482, 22940, 27478, 47486
Offset: 1

Views

Author

Robert Price, Jun 09 2017

Keywords

Comments

Corresponding primes are: 29, 31, 43, 67, 251, 4507, 14107, 116507, 3727387, 536166427, ...
a(30) > 50000.
Terms > 40 correspond to probable primes.

Examples

			10!6 + 27 = 10*4 + 27 = 67 is prime, so 10 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 6] + 27] &]
    Select[Range[48000],PrimeQ[Times@@Range[#,1,-6]+27]&] (* Harvey P. Dale, Aug 10 2021 *)

A288448 Numbers k such that k!6 + 32 is prime, where k!6 is the sextuple factorial number (A085158 ).

Original entry on oeis.org

5, 9, 17, 21, 29, 53, 57, 105, 111, 279, 303, 435, 483, 677, 1049, 1217, 1395, 9651, 26031, 31937
Offset: 1

Views

Author

Robert Price, Jun 09 2017

Keywords

Comments

Corresponding primes are: 37, 59, 967, 8537, 623677, 2229272062357, 38661097149707, ...
a(21) > 50000.
Terms > 29 correspond to probable primes.

Examples

			17!6 + 32 = 17*11*5 + 32 = 967 is prime, so 17 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 6] + 32] &]

A288449 Numbers k such that k!6 + 36 is prime, where k!6 is the sextuple factorial number (A085158 ).

Original entry on oeis.org

1, 5, 7, 13, 17, 25, 29, 31, 55, 77, 119, 311, 373, 587, 1037, 1057, 1645, 2279, 2327, 2531, 2893, 2917, 3293, 3799, 9139, 14131, 14405, 15041, 24923, 26563, 48743
Offset: 1

Views

Author

Robert Price, Jun 09 2017

Keywords

Comments

Corresponding primes are: 37, 41, 43, 127, 971, 43261, 623681, 1340011, 5745471106411, ...
a(32) > 50000.
Terms > 31 correspond to probable primes.

Examples

			13!6 + 36 = 13*7*1 + 36 = 127 is prime, so 11 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 6] + 36] &]

A288450 Numbers k such that k!6 + 48 is prime, where k!6 is the sextuple factorial number (A085158 ).

Original entry on oeis.org

5, 11, 13, 17, 19, 35, 43, 49, 67, 71, 73, 85, 103, 263, 293, 497, 529, 599, 905, 971, 1685, 2927, 3635, 3847, 4535, 8501, 38777
Offset: 1

Views

Author

Robert Price, Jun 09 2017

Keywords

Comments

Corresponding primes are: 53, 103, 139, 983, 1777, 21827623, 2131900273, 104463111073, ...
a(28) > 50000.
Terms > 49 correspond to probable primes.

Examples

			11!6 + 48 = 11*5 + 48 = 103 is prime, so 11 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 6] + 48] &]

A289547 Numbers k such that k!6 - 4 is prime, where k!6 is the sextuple factorial number (A085158 ).

Original entry on oeis.org

6, 7, 9, 15, 21, 27, 29, 321, 327, 333, 567, 1025, 4263, 4365, 5175, 5655, 9221, 9327, 9681, 19685, 24777, 57869, 58737
Offset: 1

Views

Author

Robert Price, Jul 07 2017

Keywords

Comments

Corresponding primes are: 2, 3, 23, 401, 8501, 229631, 623641, ...
a(24) > 10^5.
Terms > 29 correspond to probable primes.

Examples

			15!6 - 4 = 15*9*3 - 4 = 401 is prime, so 15 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[4, 50000], PrimeQ[MultiFactorial[#, 6] - 4] &]

Extensions

a(22)-a(23) from Robert Price, Aug 03 2018
Previous Showing 21-30 of 51 results. Next