cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A208737 Number of nonisomorphic graded posets with 0 and 1 and non-uniform Hasse graph of rank n, with no 3-element antichain.

Original entry on oeis.org

0, 0, 0, 1, 7, 37, 175, 778, 3325, 13837, 56524, 227866, 909832, 3607294, 14227447, 55894252, 218937532, 855650749, 3338323915, 13007422705, 50631143323, 196928737582, 765495534433, 2974251390529, 11552064922624, 44856304154086
Offset: 0

Views

Author

David Nacin, Mar 01 2012

Keywords

Comments

Uniform used in the sense of Retakh, Serconek and Wilson. We use Stanley's definition of graded poset: all maximal chains have the same length n (which also implies all maximal elements have maximal rank.)

References

  • R. Stanley, Enumerative combinatorics. Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.

Crossrefs

Programs

  • Mathematica
    Join[{0}, LinearRecurrence[{10, -36, 57, -39, 9}, {0, 0, 1, 7, 37}, 40]]
  • Python
    def a(n, d={0:0,1:0,2:0,3:1,4:7,5:37}):
        if n in d:
            return d[n]
        d[n]=10*a(n-1) - 36*a(n-2) + 57*a(n-3) - 39*a(n-4) + 9*a(n-5)
        return d[n]

Formula

a(n) = 10*a(n-1) - 36*a(n-2) + 57*a(n-3) - 39*a(n-4) + 9*a(n-5), a(1) = 0, a(2) = 0, a(3) = 1, a(4) = 7, a(5) = 37.
G.f: (x^3 - 3*x^4 + 3*x^5)/(1 - 10*x + 36*x^2 - 57*x^3 + 39*x^4 - 9*x^5); (x^3*(1 - 3*x + 3*x^2)) / ((1 - x) (1 - 3*x) (1 - 6*x + 9*x^2 - 3*x^3)).
a(n) = A124292(n) - A124302(n).

A122935 Triangle T(n,k), 0 <= k <= n, read by rows given by [0, 1, 0, 1, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 1, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 6, 1, 0, 1, 10, 19, 10, 1, 0, 1, 15, 45, 45, 15, 1, 0, 1, 21, 90, 141, 90, 21, 1, 0, 1, 28, 161, 357, 357, 161, 28, 1, 0, 1, 36, 266, 784, 1107, 784, 266, 36, 1, 0, 1, 45, 414, 1554, 2907, 2907, 1554, 414, 45, 1, 0, 1, 55, 615, 2850, 6765, 8953
Offset: 0

Views

Author

Philippe Deléham, Oct 30 2006

Keywords

Comments

Subtriangle (1 <= k <= n) is in A056241.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1,  1;
  0, 1,  3,   1;
  0, 1,  6,   6,    1;
  0, 1, 10,  19,   10,    1;
  0, 1, 15,  45,   45,   15,    1;
  0, 1, 21,  90,  141,   90,   21,    1;
  0, 1, 28, 161,  357,  357,  161,   28,    1;
  0, 1, 36, 266,  784, 1107,  784,  255,   36,   1;
  0, 1, 45, 414, 1554, 2907, 2907, 1554,  414,  45,  1;
  0, 1, 55, 615, 2850, 6765, 8953, 6765, 2850, 615, 55, 1;
		

Crossrefs

Formula

T(2*k-1,k) = A082758(k-1)for k >= 1.
Sum_{k=0..n} T(n,k) = A124302(n); see also A007051.
Sum_{k=0..n} (-1)^(n-k)*T(n,k) = A117569(n).
G.f.: (1-x*(y+2)+x^2)/(1-2x*(1+y)+(1+y+y^2)*x^2). - Philippe Deléham, Oct 30 2011

A198793 Triangle T(n,k), read by rows, given by (1,0,0,1,0,0,0,0,0,0,0,...) DELTA (0,1,1,0,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 4, 0, 1, 4, 12, 16, 8, 0, 1, 5, 20, 40, 40, 16, 0, 1, 6, 30, 80, 120, 96, 32, 0, 1, 7, 42, 140, 280, 336, 224, 64, 0, 1, 8, 56, 224, 560, 896, 896, 512, 128, 0, 1, 9, 72, 336, 1008, 2016, 2688, 2304, 1152, 256, 0
Offset: 0

Views

Author

Philippe Deléham, Oct 30 2011

Keywords

Comments

Mirror image of A198792.
Variant of A082137.

Examples

			Triangle begins :
1
1, 0
1, 1, 0
1, 2, 2, 0
1, 3, 6, 4, 0
1, 4, 12, 16, 8, 0,
1, 5, 20, 40, 40, 16, 0
		

Crossrefs

Formula

Sum_ {0<=k<=n} T(n,k) = A124302(n).
G.f.:(1-x*(1+2y)+x^2*y)/((1-x)*(1-(1+2y)*x)).
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) - 2*T(n-2,k-1) for n>2, T(0,0) = T(1,0) = T(2,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Nov 10 2013
Previous Showing 21-23 of 23 results.