cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A124565 Row 5 of table A124560; also, the self-convolution 5th power equals A124555, which is row 5 of table A124550.

Original entry on oeis.org

1, 1, 6, 51, 556, 7581, 128532, 2689248, 68880819, 2155007000, 82603481941, 3896490943878, 227153148813546, 16429403864272555, 1478934508425795630, 166091860417795409081, 23316582876166010185959
Offset: 0

Views

Author

Paul D. Hanna, Nov 07 2006

Keywords

Comments

In table A124560, the g.f. of row n, R_n(y), simultaneously satisfies: R_n(y) = Sum_{k>=0} y^k * [R_{n*k}(y)]^(n*k) for n>=0.

Crossrefs

Cf. A124560 (table); other rows: A124551, A124562, A124563, A124564, A124566.

Formula

G.f.: A(x) = Sum_{k>=0} y^k * [R_{5k}(y)]^(5k), where R_n(x) is the g.f. of row n in table A124560.

A124566 Row 6 of table A124560; also, the self-convolution 6th power equals A124556, which is row 6 of table A124550.

Original entry on oeis.org

1, 1, 7, 70, 891, 14036, 272914, 6525900, 190604859, 6781448755, 294798563020, 15737487680990, 1036588563202854, 84606134756948277, 8587502188940359207, 1086820294948914428468, 171866738763640156327659
Offset: 0

Views

Author

Paul D. Hanna, Nov 07 2006

Keywords

Comments

In table A124560, the g.f. of row n, R_n(y), simultaneously satisfies: R_n(y) = Sum_{k>=0} y^k * [R_{n*k}(y)]^(n*k) for n>=0.

Crossrefs

Cf. A124560 (table); other rows: A124551, A124562, A124563, A124564, A124565.

Formula

G.f.: A(x) = Sum_{k>=0} y^k * [R_{6k}(y)]^(6k), where R_n(x) is the g.f. of row n in table A124560.

A124557 Main diagonal of table A124550.

Original entry on oeis.org

1, 1, 7, 91, 1899, 57876, 2447115, 139777303, 10629219251, 1066463205220, 140409644914798, 24185696469330452, 5439617764120907676, 1594552369099740836202, 608364562372792302094447
Offset: 0

Views

Author

Paul D. Hanna, Nov 07 2006

Keywords

Comments

In table A124550, the g.f. of row n, R_n(y), simultaneously satisfies: R_n(y) = [ Sum_{k>=0} y^k * R_{n*k}(y) ]^n for n>=0.

Crossrefs

A124558 Secondary diagonal of table A124550; a(n) = A124550(n+1,n).

Original entry on oeis.org

1, 2, 15, 204, 4345, 133212, 5621371, 319211576, 24097683942, 2399637270890, 313606810455697, 53638534570897308, 11984755429488415041, 3491974842611221434342, 1324861497596788043284935
Offset: 0

Views

Author

Paul D. Hanna, Nov 07 2006

Keywords

Comments

In table A124550, the g.f. of row n, R_n(y), simultaneously satisfies: R_n(y) = [ Sum_{k>=0} y^k * R_{n*k}(y) ]^n for n>=0.

Crossrefs

Formula

a(n) is divisible by (n+1): A124559(n) = a(n)/(n+1).

A124559 Derived from secondary diagonal of table A124550; a(n) = A124550(n+1,n)/(n+1).

Original entry on oeis.org

1, 1, 5, 51, 869, 22202, 803053, 39901447, 2677520438, 239963727089, 28509710041427, 4469877880908109, 921904263806801157, 249426774472230102453, 88324099839785869552329
Offset: 0

Views

Author

Paul D. Hanna, Nov 07 2006

Keywords

Comments

In table A124550, the g.f. of row n, R_n(y), simultaneously satisfies: R_n(y) = [ Sum_{k>=0} y^k * R_{n*k}(y) ]^n for n>=0.

Crossrefs

Formula

a(n) = (n+1)*A124558(n).

A124568 Triangle, read by rows, where row n equals the inverse binomial transform of the column n in rectangular table A124550 (starting with row 1).

Original entry on oeis.org

1, 1, 1, 2, 5, 3, 5, 25, 36, 16, 16, 143, 364, 362, 125, 66, 990, 3909, 6417, 4728, 1296, 348, 8464, 48518, 116274, 135932, 76867, 16807, 2321, 89741, 720078, 2370938, 3923330, 3441366, 1518460, 262144, 19437, 1180978, 12965026, 56627440
Offset: 0

Views

Author

Paul D. Hanna, Nov 08 2006

Keywords

Examples

			Triangle begins:
1;
1, 1;
2, 5, 3;
5, 25, 36, 16;
16, 143, 364, 362, 125;
66, 990, 3909, 6417, 4728, 1296;
348, 8464, 48518, 116274, 135932, 76867, 16807;
2321, 89741, 720078, 2370938, 3923330, 3441366, 1518460, 262144; ...
		

Crossrefs

Formula

T(n,n) = (n+1)^(n-1) = A000272(n+1). T(n,0) = A124551(n).
Previous Showing 11-16 of 16 results.