cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 56 results. Next

A333215 Lengths of maximal weakly increasing subsequences in the sequence of prime gaps (A001223).

Original entry on oeis.org

4, 2, 3, 2, 1, 4, 2, 1, 2, 3, 1, 2, 3, 2, 2, 3, 3, 2, 2, 3, 1, 3, 2, 3, 2, 1, 3, 1, 3, 2, 4, 2, 3, 3, 2, 2, 3, 1, 3, 1, 2, 3, 2, 2, 2, 3, 2, 3, 1, 2, 1, 4, 2, 4, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 3, 1, 3, 1, 3, 3, 1, 4, 4, 2, 2, 2, 3, 2, 3, 1, 5, 3, 2, 2, 4, 3, 3
Offset: 1

Views

Author

Gus Wiseman, Mar 14 2020

Keywords

Comments

Prime gaps are differences between adjacent prime numbers.

Examples

			The prime gaps split into the following weakly increasing subsequences: (1,2,2,4), (2,4), (2,4,6), (2,6), (4), (2,4,6,6), (2,6), (4), (2,6), (4,6,8), (4), (2,4), (2,4,14), ...
		

Crossrefs

Prime gaps are A001223.
Ones correspond to strong prime quartets A054804.
Weakly increasing runs of compositions in standard order are A124766.
First differences of A258026 (with zero prepended).
The version for the Kolakoski sequence is A332875.
The weakly decreasing version is A333212.
The unequal version is A333216.
Positions of weak ascents in prime gaps are A333230.
The strictly decreasing version is A333252.
The strictly increasing version is A333253.
The equal version is A333254.

Programs

  • Mathematica
    Length/@Split[Differences[Array[Prime,100]],#1<=#2&]//Most

Formula

Ones correspond to strong prime quartets (A054804), so the sum of terms up to but not including the n-th one is A000720(A054804(n - 1)).

A375124 Weakly decreasing run-leader transformation for standard compositions.

Original entry on oeis.org

0, 1, 2, 1, 4, 2, 6, 1, 8, 4, 2, 2, 12, 6, 6, 1, 16, 8, 4, 4, 20, 2, 10, 2, 24, 12, 6, 6, 12, 6, 6, 1, 32, 16, 8, 8, 4, 4, 18, 4, 40, 20, 2, 2, 20, 10, 10, 2, 48, 24, 12, 12, 52, 6, 26, 6, 24, 12, 6, 6, 12, 6, 6, 1, 64, 32, 16, 16, 8, 8, 34, 8, 72, 4, 4, 4, 36
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2024

Keywords

Comments

The a(n)-th composition in standard order lists the leaders of weakly decreasing runs in the n-th composition in standard order.
The leaders of weakly decreasing runs in a sequence are obtained by splitting it into maximal weakly decreasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 813th composition in standard order is (1,3,2,1,2,1), with weakly decreasing runs ((1),(3,2,1),(2,1)), with leaders (1,3,2). This is the 50th composition in standard order, so a(813) = 50.
		

Crossrefs

Positions of elements of A233564 are A374701, counted by A374743.
Positions of elements of A272919 are A374744, counted by A374742.
Ranks of rows of A374740.
The opposite version is A375123.
The strict version is A375126.
The strict opposite version is A375125.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) = A070939(n).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Run-length transform is A333627, sum A070939.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
- Run-sum transformation is A353847.
Six types of runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[stcinv[First/@Split[stc[n],GreaterEqual]],{n,0,100}]

Formula

A000120(a(n)) = A124765(n).
A065120(a(n)) = A065120(n).
A070939(a(n)) = A374741(n).

A375125 Strictly increasing run-leader transformation for standard compositions.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 1, 7, 8, 9, 10, 11, 1, 3, 3, 15, 16, 17, 18, 19, 2, 21, 5, 23, 1, 3, 6, 7, 3, 7, 7, 31, 32, 33, 34, 35, 36, 37, 9, 39, 2, 5, 42, 43, 5, 11, 11, 47, 1, 3, 6, 7, 1, 13, 3, 15, 3, 7, 14, 15, 7, 15, 15, 63, 64, 65, 66, 67, 68, 69, 17, 71, 4, 73
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2024

Keywords

Comments

The a(n)-th composition in standard order lists the leaders of strictly increasing runs in the n-th composition in standard order.
The leaders of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 813th composition in standard order is (1,3,2,1,2,1), with strictly increasing runs ((1,3),(2),(1,2),(1)), with leaders (1,2,1,1). This is the 27th composition in standard order, so a(813) = 27.
		

Crossrefs

Positions of elements of A233564 are A374698, counted by A374687.
Positions of elements of A272919 are A374685, counted by A374686.
Ranks of rows of A374683.
The weak version is A375123.
The weak opposite version is A375124.
The opposite version is A375126.
Other transformations: A375127, A373948.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) = A070939(n).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Run-length transform is A333627.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
- Run-sum transformation is A353847.
Six types of runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[stcinv[First/@Split[stc[n],Less]],{n,0,100}]

Formula

A000120(a(n)) = A124768(n).
A065120(a(n)) = A065120(n).
A070939(a(n)) = A374684(n).

A375126 Strictly decreasing run-leader transformation for standard compositions.

Original entry on oeis.org

0, 1, 2, 3, 4, 2, 6, 7, 8, 4, 10, 5, 12, 6, 14, 15, 16, 8, 4, 9, 20, 10, 10, 11, 24, 12, 26, 13, 28, 14, 30, 31, 32, 16, 8, 17, 36, 4, 18, 19, 40, 20, 42, 21, 20, 10, 22, 23, 48, 24, 12, 25, 52, 26, 26, 27, 56, 28, 58, 29, 60, 30, 62, 63, 64, 32, 16, 33, 8, 8
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2024

Keywords

Comments

The a(n)-th composition in standard order lists the leaders of strictly decreasing runs in the n-th composition in standard order.
The leaders of strictly decreasing runs in a sequence are obtained by splitting it into maximal strictly decreasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
Does this sequence contain all nonnegative integers?

Examples

			The 813th composition in standard order is (1,3,2,1,2,1), with strictly decreasing runs ((1),(3,2,1),(2,1)), with leaders (1,3,2). This is the 50th composition in standard order, so a(813) = 50.
		

Crossrefs

Positions of elements of A233564 are A374767, counted by A374761.
Positions of elements of A272919 are A374759, counted by A374760.
Ranks of rows of A374757 (row-sums A374758).
The weak opposite version is A375123.
The weak version is A375124.
The opposite version is A375125.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) = A070939(n).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Run-length transform is A333627.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
- Run-sum transformation is A353847.
Six types of runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[stcinv[First/@Split[stc[n],Greater]],{n,0,100}]

Formula

A000120(a(n)) = A124769(n).
A065120(a(n)) = A065120(n).
A070939(a(n)) = A374758(n).

A375127 The anti-run-leader transformation for standard compositions.

Original entry on oeis.org

0, 1, 2, 3, 4, 2, 1, 7, 8, 4, 10, 5, 1, 1, 3, 15, 16, 8, 4, 9, 2, 10, 2, 11, 1, 1, 6, 3, 3, 3, 7, 31, 32, 16, 8, 17, 36, 4, 4, 19, 2, 2, 42, 21, 2, 2, 5, 23, 1, 1, 1, 3, 1, 6, 1, 7, 3, 3, 14, 7, 7, 7, 15, 63, 64, 32, 16, 33, 8, 8, 8, 35, 4, 36, 18, 9, 4, 4, 9
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2024

Keywords

Comments

The a(n)-th composition in standard order lists the leaders of anti-runs of the n-th composition in standard order.
The leaders of anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
Does this sequence contain all nonnegative integers?

Examples

			The 346th composition in standard order is (2,2,1,2,2), with anti-runs ((2),(2,1,2),(2)), with leaders (2,2,2). This is the 42nd composition in standard order, so a(346) = 42.
		

Crossrefs

Positions of elements of A233564 are A374638, counted by A374518.
Positions of elements of A272919 are A374519, counted by A374517.
Ranks of rows of A374515.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) = A070939(n).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Run-length transform is A333627.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
- Run-sum transform is A353847.
Six types of runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[stcinv[First/@Split[stc[n],UnsameQ]],{n,0,100}]

Formula

A000120(a(n)) = A333381(n).
A065120(a(n)) = A065120(n).
A070939(a(n)) = A374516(n).

A333231 Positions of weak descents in the sequence of differences between primes.

Original entry on oeis.org

2, 4, 6, 9, 11, 12, 15, 16, 18, 19, 21, 24, 25, 27, 30, 32, 34, 36, 37, 39, 40, 42, 44, 46, 47, 48, 51, 53, 54, 55, 56, 58, 59, 62, 63, 66, 68, 72, 73, 74, 77, 80, 82, 84, 87, 88, 91, 92, 94, 97, 99, 101, 102, 103, 106, 107, 108, 110, 111, 112, 114, 115, 118
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2020

Keywords

Comments

Partial sums of A333253.

Examples

			The prime gaps split into the following strictly increasing subsequences: (1,2), (2,4), (2,4), (2,4,6), (2,6), (4), (2,4,6), (6), (2,6), (4), (2,6), (4,6,8), (4), (2,4), (2,4,14), ...
		

Crossrefs

The version for the Kolakoski sequence is A025505.
The version for equal differences is A064113.
The version for strict ascents is A258025.
The version for strict descents is A258026.
The version for distinct differences is A333214.
The version for weak ascents is A333230.
First differences are A333253 (if the first term is 0).
Prime gaps are A001223.
Weakly decreasing runs of compositions in standard order are A124765.
Strictly increasing runs of compositions in standard order are A124768.
Runs of prime gaps with nonzero differences are A333216.

Programs

  • Mathematica
    Accumulate[Length/@Split[Differences[Array[Prime,100]],#1<#2&]]//Most
    - or -
    Select[Range[100],Prime[#+1]-Prime[#]>=Prime[#+2]-Prime[#+1]&]

Formula

Numbers k such that prime(k+2) - 2*prime(k+1) + prime(k) >= 0.

A374741 Sum of leaders of weakly decreasing runs in the n-th composition in standard order.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 3, 1, 4, 3, 2, 2, 4, 3, 3, 1, 5, 4, 3, 3, 5, 2, 4, 2, 5, 4, 3, 3, 4, 3, 3, 1, 6, 5, 4, 4, 3, 3, 5, 3, 6, 5, 2, 2, 5, 4, 4, 2, 6, 5, 4, 4, 6, 3, 5, 3, 5, 4, 3, 3, 4, 3, 3, 1, 7, 6, 5, 5, 4, 4, 6, 4, 7, 3, 3, 3, 6, 5, 5, 3, 7, 6, 5, 5, 5, 2, 4
Offset: 0

Views

Author

Gus Wiseman, Jul 24 2024

Keywords

Comments

The leaders of weakly decreasing runs in a sequence are obtained by splitting it into maximal weakly decreasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The maximal weakly decreasing subsequences of the 1234567th composition in standard order are ((3,2,1),(2,2,1),(2),(5,1,1,1)), so a(1234567) is 3+2+2+5 = 12.
		

Crossrefs

For length instead of sum we have A124765.
Other types of runs are A373953, A374516, A374684, A374758.
The opposite is A374630.
Row-sums of A374740, opposite A374629.
Counting compositions by this statistic gives A374748, opposite A374637.
A373949 counts compositions by run-compressed sum.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) (or sometimes A070939).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Number of max runs: A124765, A124766, A124767, A124768, A124769, A333381.
- Ranks of strict compositions are A233564, counted by A032020.
- Constant compositions are ranked by A272919.
- Ranks of anti-run compositions are A333489, counted by A003242.
- Run-length transform is A333627.
- Run-compression transform is A373948.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Total[First/@Split[stc[n],GreaterEqual]],{n,0,100}]

A374758 Sum of leaders of strictly decreasing runs in the n-th composition in standard order.

Original entry on oeis.org

0, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, 3, 4, 3, 4, 4, 5, 4, 3, 4, 5, 4, 4, 4, 5, 4, 5, 4, 5, 4, 5, 5, 6, 5, 4, 5, 6, 3, 5, 5, 6, 5, 6, 5, 5, 4, 5, 5, 6, 5, 4, 5, 6, 5, 5, 5, 6, 5, 6, 5, 6, 5, 6, 6, 7, 6, 5, 6, 4, 4, 6, 6, 7, 6, 5, 4, 6, 5, 6, 6, 7, 6, 5, 6, 7, 6, 6
Offset: 0

Views

Author

Gus Wiseman, Jul 29 2024

Keywords

Comments

The leaders of strictly decreasing runs in a sequence are obtained by splitting it into maximal strictly decreasing subsequences and taking the first term of each.

Examples

			The maximal strictly decreasing subsequences of the 1234567th composition in standard order are ((3,2,1),(2),(2,1),(2),(5,1),(1),(1)) with leaders (3,2,2,2,5,1,1), so a(1234567) = 16.
		

Crossrefs

Row sums of A374757.
For leaders of constant runs we have A373953.
For leaders of anti-runs we have A374516.
For leaders of weakly increasing runs we have A374630.
For length instead of sum we have A124769.
The opposite version is A374684, sum of A374683 (length A124768).
The case of partitions ranked by Heinz numbers is A374706.
The weak version is A374741, sum of A374740 (length A124765).
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Leader is A065120.
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Run-length transform is A333627, sum A070939.
- Run-compression transform is A373948.
- Ranks of contiguous compositions are A374249, counted by A274174.
- Ranks of non-contiguous compositions are A374253, counted by A335548.
Six types of runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Total[First/@Split[stc[n],Greater]],{n,0,100}]

A124760 Number of rises for compositions in standard order.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 2
Offset: 0

Views

Author

Keywords

Comments

The standard order of compositions is given by A066099.
A114994 seems to give the positions of zeros. - Antti Karttunen, Jul 09 2017
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. a(n) is one fewer than the number of maximal weakly decreasing runs in this composition. Alternatively, a(n) is the number of strict ascents in the same composition. For example, the weakly decreasing runs of the 1234567th composition are ((3,2,1),(2,2,1),(2),(5,1,1,1)), so a(1234567) = 4 - 1 = 3. The 3 strict ascents together with the weak descents are: 3 >= 2 >= 1 < 2 >= 2 >= 1 < 2 < 5 >= 1 >= 1 >= 1. - Gus Wiseman, Apr 08 2020

Examples

			Composition number 11 is 2,1,1; 2>=1>=1, so a(11) = 0.
The table starts:
  0
  0
  0 0
  0 0 1 0
  0 0 0 0 1 1 1 0
  0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 0
  0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 0 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 0
		

Crossrefs

Cf. A066099, A124761, A124762, A124763, A124764, A011782 (row lengths), A045883 (row sums), A233249, A333213, A333380.
Compositions of n with k strict ascents are A238343.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Sum is A070939.
- Weakly decreasing compositions are A114994.
- Weakly decreasing runs are counted by A124765.
- Weakly increasing runs are counted by A124766.
- Equal runs are counted by A124767.
- Strictly increasing runs are counted by A124768.
- Strictly decreasing runs are counted by A124769.
- Weakly increasing compositions are A225620.
- Reverse is A228351 (triangle).
- Strict compositions are A233564.
- Constant compositions are A272919.
- Normal compositions are A333217.
- Strictly decreasing compositions are A333255.
- Strictly increasing compositions are A333256.
- Anti-runs are counted by A333381.
- Adjacent unequal pairs are counted by A333382.
- Anti-runs are A333489.
- Runs-resistance is A333628.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[Select[Partition[stc[n],2,1],Less@@#&]],{n,0,100}] (* Gus Wiseman, Apr 08 2020 *)
  • PARI
    A066099row(n) = {my(v=vector(n), j=0, k=0); while(n>0, k++; if(n%2==1, v[j++]=k; k=0); n\=2);  vector(j, i, v[j-i+1]); } \\ Returns empty for n=0. - From code of Franklin T. Adams-Watters in A066099.
    A124760(n) = { my(v=A066099row(n), r=0); for(i=2,length(v),r += (v[i]>v[i-1])); (r); }; \\ Antti Karttunen, Jul 09 2017

Formula

For a composition b(1),...,b(k), a(n) = Sum_{i = 1 .. k-1} [b(i+1) > b(i)], where [ ] is Iverson bracket, giving in this case 1 only if b(i+1) > b(i), and 0 otherwise. - Formula clarified by Antti Karttunen, Jul 10 2017
For n > 0, a(n) = A124765(n) - 1. - Gus Wiseman, Apr 08 2020

A374684 Sum of leaders of strictly increasing runs in the n-th composition in standard order.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 1, 3, 4, 4, 4, 4, 1, 2, 2, 4, 5, 5, 5, 5, 2, 5, 3, 5, 1, 2, 3, 3, 2, 3, 3, 5, 6, 6, 6, 6, 6, 6, 4, 6, 2, 3, 6, 6, 3, 4, 4, 6, 1, 2, 3, 3, 1, 4, 2, 4, 2, 3, 4, 4, 3, 4, 4, 6, 7, 7, 7, 7, 7, 7, 5, 7, 3, 7, 7, 7, 4, 5, 5, 7, 2, 3, 4, 4, 4, 7, 5
Offset: 0

Views

Author

Gus Wiseman, Jul 26 2024

Keywords

Comments

The leaders of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.

Examples

			The maximal strictly increasing subsequences of the 1234567th composition in standard order are ((3),(2),(1,2),(2),(1,2,5),(1),(1),(1)) with leaders (3,2,1,2,1,1,1,1), so a(1234567) = 12.
		

Crossrefs

The weak version is A374630.
Row-sums of A374683.
The opposite version is A374758.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) (or sometimes A070939).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Number of max runs: A124765, A124766, A124767, A124768, A124769, A333381.
- Run-length transform is A333627.
- Run-compression transform is A373948.
- Ranks of contiguous compositions are A374249, counted by A274174.
- Ranks of non-contiguous compositions are A374253, counted by A335548.
Cf. A374251 (sums A373953), A374515 (sums A374516), A374740 (sums A374741).

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Total[First/@Split[stc[n],Less]],{n,0,100}]
Previous Showing 31-40 of 56 results. Next