A364058 Heinz numbers of integer partitions with median > 1. Numbers whose multiset of prime factors has median > 2.
3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 85, 86
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 3: {2} 23: {9} 42: {1,2,4} 5: {3} 25: {3,3} 43: {14} 6: {1,2} 26: {1,6} 45: {2,2,3} 7: {4} 27: {2,2,2} 46: {1,9} 9: {2,2} 29: {10} 47: {15} 10: {1,3} 30: {1,2,3} 49: {4,4} 11: {5} 31: {11} 50: {1,3,3} 13: {6} 33: {2,5} 51: {2,7} 14: {1,4} 34: {1,7} 53: {16} 15: {2,3} 35: {3,4} 54: {1,2,2,2} 17: {7} 36: {1,1,2,2} 55: {3,5} 18: {1,2,2} 37: {12} 57: {2,8} 19: {8} 38: {1,8} 58: {1,10} 21: {2,4} 39: {2,6} 59: {17} 22: {1,5} 41: {13} 60: {1,1,2,3}
Crossrefs
These partitions are counted by A238495.
Programs
-
Mathematica
prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]]; Select[Range[100],Median[prifacs[#]]>2&]
Comments