cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 36 results. Next

A287838 Number of words of length n over the alphabet {0,1,...,10} such that no two consecutive terms have distance 8.

Original entry on oeis.org

1, 11, 115, 1205, 12625, 132275, 1385875, 14520125, 152130625, 1593906875, 16699721875, 174966753125, 1833166140625, 19206495171875, 201230782421875, 2108340300078125, 22089556912890625, 231437270629296875, 2424820490857421875, 25405391261720703125
Offset: 0

Views

Author

David Nacin, Jun 07 2017

Keywords

Comments

In general, the number of sequences on {0,1,...,10} such that no two consecutive terms have distance 6+k for k in {0,1,2,3,4} has generating function (-1 - x)/(-1 + 10*x + (2*k+1)*x^2).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{10, 5}, {1, 11, 115}, 20]
  • PARI
    Vec((1 + x) / (1 - 10*x - 5*x^2) + O(x^40)) \\ Colin Barker, Nov 25 2017
  • Python
    def a(n):
     if n in [0,1,2]:
      return [1, 11, 115][n]
     return 10*a(n-1) + 5*a(n-2)
    

Formula

For n > 2, a(n) = 10*a(n-1) + 5*a(n-2), a(0)=1, a(1)=11, a(2)=115.
G.f.: (-1 - x)/(-1 + 10*x + 5*x^2).
a(n) = (((5-sqrt(30))^n*(-6+sqrt(30)) + (5+sqrt(30))^n*(6+sqrt(30)))) / (2*sqrt(30)). - Colin Barker, Nov 25 2017

A296449 Triangle I(m,n) read by rows: number of perfect lattice paths on the m*n board.

Original entry on oeis.org

1, 2, 4, 3, 7, 17, 4, 10, 26, 68, 5, 13, 35, 95, 259, 6, 16, 44, 122, 340, 950, 7, 19, 53, 149, 421, 1193, 3387, 8, 22, 62, 176, 502, 1436, 4116, 11814, 9, 25, 71, 203, 583, 1679, 4845, 14001, 40503, 10, 28, 80, 230, 664, 1922, 5574, 16188, 47064, 136946, 11, 31, 89, 257, 745, 2165, 6303, 18375, 53625, 156629, 457795
Offset: 1

Views

Author

R. J. Mathar, Dec 13 2017

Keywords

Examples

			Triangle begins:
   1;
   2,  4;
   3,  7, 17;
   4, 10, 26,  68;
   5, 13, 35,  95, 259;
   6, 16, 44, 122, 340,  950;
   7, 19, 53, 149, 421, 1193, 3387;
   8, 22, 62, 176, 502, 1436, 4116, 11814;
   9, 25, 71, 203, 583, 1679, 4845, 14001, 40503;
  10, 28, 80, 230, 664, 1922, 5574, 16188, 47064, 136946;
		

Crossrefs

Cf. A081113 (diagonal), A000079 (2nd row), A001333 (3rd row), A126358, A057960, A126360, A002714, A126362, A188866.

Programs

  • Maple
    Inm := proc(n,m)
        if m >= n then
            (n+2)*3^(n-2)+(m-n)*add(A005773(i)*A005773(n-i),i=0..n-1)
                +2*add((n-k-2)*3^(n-k-3)*A001006(k),k=0..n-3) ;
        else
            0 ;
        end if;
    end proc:
    for m from 1 to 13 do
    for n from 1 to m do
        printf("%a,",Inm(n,m)) ;
    end do:
    printf("\n") ;
    end do:
    # Second program:
    A296449row := proc(n) local gf, ser;
    gf := n -> 1 + (x*(n - (3*n + 2)*x) + (2*x^2)*(1 +
    ChebyshevU(n - 1, (1 - x)/(2*x))) / ChebyshevU(n, (1 - x)/(2*x)))/(1 - 3*x)^2;
    ser := n -> series(expand(gf(n)), x, n + 1);
    seq(coeff(ser(n), x, k), k = 1..n) end:
    for n from 0 to 11 do A296449row(n) od; # Peter Luschny, Sep 07 2021
  • Mathematica
    (* b = A005773 *) b[0] = 1; b[n_] := Sum[k/n*Sum[Binomial[n, j] * Binomial[j, 2*j - n - k], {j, 0, n}], {k, 1, n}];
    (* c = A001006 *) c[0] = 1; c[n_] := c[n] = c[n-1] + Sum[c[k] * c[n-2-k], {k, 0, n-2}];
    Inm[n_, m_] := If[m >= n, (n + 2)*3^(n - 2) + (m - n)*Sum[b[i]*b[n - i], {i, 0, n - 1}] + 2*Sum[(n - k - 2)*3^(n - k - 3)*c[k], {k, 0, n-3}], 0];
    Table[Inm[n, m], {m, 1, 13}, {n, 1, m}] // Flatten (* Jean-François Alcover, Jan 23 2018, adapted from first Maple program. *)

Formula

I(m,n) = (n+2)*3^(n-2) + (m-n)*Sum_{i=0..n-1} A005773(i)*A005773(n-i) + 2*Sum_{k=0..n-3} (n-k-2)*3^(n-k-3)*A001006(k). [Yaqubi Corr. 2.10]
I(m,n) = A188866(m-1,n) for m > 1. - Pontus von Brömssen, Sep 06 2021

A287805 Number of quinary sequences of length n such that no two consecutive terms have distance 2.

Original entry on oeis.org

1, 5, 19, 73, 281, 1083, 4175, 16097, 62065, 239307, 922711, 3557761, 13717913, 52893147, 203943935, 786361409, 3032030689, 11690820555, 45077144455, 173807214241, 670161078089, 2583988659867, 9963272432111, 38416111919777, 148123788152017, 571131629935179
Offset: 0

Views

Author

David Nacin, Jun 01 2017

Keywords

Examples

			For n=2 the a(2)=19=25-6 sequences contain every combination except these six: 02,20,13,31,24,42.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4, 1, -6}, {1, 5, 19, 73}, 40]
  • Python
    def a(n):
     if n in [0,1,2,3]:
      return [1,5,19,73][n]
     return 4*a(n-1)+a(n-2)-6*a(n-3)

Formula

For n>0, a(n) = 4*a(n-1) + a(n-2) - 6*a(n-3), a(1)=5, a(2)=19, a(3)=73.
G.f.: (1 + x - 2*x^2 - 2*x^3)/(1 - 4*x - x^2 + 6*x^3).

A287806 Number of senary sequences of length n such that no two consecutive terms have distance 1.

Original entry on oeis.org

1, 6, 26, 114, 500, 2194, 9628, 42252, 185422, 813722, 3571010, 15671340, 68773514, 301811860, 1324498252, 5812546998, 25508302906, 111942925778, 491260382084, 2155891150146, 9461106209228, 41519967599596, 182209952129086, 799626506818554, 3509152727035810
Offset: 0

Views

Author

David Nacin, Jun 01 2017

Keywords

Examples

			For n=2 the a(2)=26=36-10 sequences contain every combination except these ten: 01,10,12,21,23,32,34,43,45,54.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{5, -2, -3}, {1, 6, 26, 114}, 40]
  • Python
    def a(n):
     if n in [0, 1, 2, 3]:
      return [1, 6, 26, 114][n]
     return 5*a(n-1)-2*a(n-2)-3*a(n-3)

Formula

For n>3, a(n) = 5*a(n-1) - 2*a(n-2) - 3*a(n-3), a(1)=6, a(2)=26, a(3)=114.
G.f.: (1 + x - 2*x^2 - x^3)/(1 - 5*x + 2*x^2 + 3*x^3).

A287807 Number of senary sequences of length n such that no two consecutive terms have distance 2.

Original entry on oeis.org

1, 6, 28, 132, 624, 2952, 13968, 66096, 312768, 1480032, 7003584, 33141312, 156826368, 742110336, 3511703808, 16617560832, 78635142144, 372105487872, 1760822074368, 8332299518976, 39428864667648, 186579390892032, 882903157346304, 4177942598725632
Offset: 0

Views

Author

David Nacin, Jun 01 2017

Keywords

Examples

			For n=2 the a(2)=28=36-8 sequences contain every combination except these eight: 02,20,13,31,24,42,35,53.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6, -6}, {1, 6, 28}, 40]
  • Python
    def a(n):
     if n in [0, 1, 2]:
      return [1, 6, 28][n]
     return 6*a(n-1)-6*a(n-2)

Formula

For n>2, a(n) = 6*a(n-1) - 6*a(n-2), a(1)=6, a(2)=28.
G.f.: (1 - 2*x^2)/(1 - 6*x + 6*x^2).

A287808 Number of septenary sequences of length n such that no two consecutive terms have distance 1.

Original entry on oeis.org

1, 7, 37, 197, 1049, 5587, 29757, 158491, 844153, 4496123, 23947233, 127547675, 679344041, 3618320227, 19271886609, 102645866251, 546712113769, 2911896468083, 15509334488577, 82605772190267, 439974623297369, 2343391557436483, 12481365289466289
Offset: 0

Views

Author

David Nacin, Jun 01 2017

Keywords

Examples

			For n=2 the a(2)=37=49-12 sequences contain every combination except these twelve: 01,10,12,21,23,32,34,43,45,54,56,65.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{7, -8, -6, 6}, {1, 7, 37, 197, 1049}, 40]
  • Python
    def a(n):
     if n in [0,1,2,3,4]:
      return [1, 7, 37, 197, 1049][n]
     return 7*a(n-1)-8*a(n-2)-6*a(n-3)+6*a(n-4)

Formula

For n>4, a(n) = 7*a(n-1) - 8*a(n-2) - 6*a(n-3) + 6*a(n-4), a(1)=7, a(2)=37, a(3)=197, a(4)=1049.
G.f.: (1-4*x^2+2*x^4)/(1-7*x+8*x^2+6*x^3-6*x^4).

A287809 Number of septenary sequences of length n such that no two consecutive terms have distance 2.

Original entry on oeis.org

1, 7, 39, 219, 1231, 6921, 38913, 218789, 1230147, 6916539, 38888455, 218651553, 1229375193, 6912200477, 38864063403, 218514412227, 1228604118319, 6907865088537, 38839687552689, 218377358251349, 1227833528067027, 6903532420748427, 38815326992539159
Offset: 0

Views

Author

David Nacin, Jun 01 2017

Keywords

Examples

			For n=2 the a(2)=49-10=39 sequences contain every combination except these ten: 02,20,13,31,24,42,35,53,46,64.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6, 0, -13, 6}, {1, 7, 39, 219, 1231}, 40]
  • Python
    def a(n):
     if n in [0, 1, 2, 3, 4]:
      return [1, 7, 39, 219, 1231][n]
     return 6*a(n-1)-13*a(n-3)+6*a(n-4)

Formula

For n>4, a(n) = 6*a(n-1) - 13*a(n-3) + 6*a(n-4), a(1)=7, a(2)=39, a(3)=219, a(4)=1231.
G.f.: (1 + x - 3*x^2 - 2*x^3 + 2*x^4)/(1 - 6*x + 13*x^3 - 6*x^4).

A287810 Number of septenary sequences of length n such that no two consecutive terms have distance 3.

Original entry on oeis.org

1, 7, 41, 241, 1417, 8333, 49005, 288193, 1694833, 9967141, 58615749, 344713305, 2027224169, 11921900829, 70111496093, 412318635697, 2424804301985, 14260029486677, 83861794865077, 493182755657289, 2900358033942041, 17056713010658765, 100308808541321741
Offset: 0

Views

Author

David Nacin, Jun 01 2017

Keywords

Examples

			For n=2 the a(2) = 49-8 = 41 sequences contain every combination except these eight: 03, 30, 14, 41, 25, 52, 36, 63.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6, 1, -10}, {1, 7, 41, 241}, 40]
  • Python
    def a(n):
     if n in [0, 1, 2, 3]:
      return [1, 7, 41, 241][n]
     return 6*a(n-1)+a(n-2)-10*a(n-3)

Formula

For n>3, a(n) = 6*a(n-1) + a(n-2) - 10*a(n-3), a(0)=1, a(1)=7, a(2)=41, a(3)=241.
G.f.: (1 + x - 2*x^2 - 2*x^3)/(1 - 6*x - x^2 + 10*x^3).

A287812 Number of octonary sequences of length n such that no two consecutive terms have distance 1.

Original entry on oeis.org

1, 8, 50, 314, 1972, 12386, 77796, 488636, 3069120, 19277130, 121079578, 760500364, 4776699874, 30002433636, 188445170924, 1183623397912, 7434334035874, 46695023649050, 293291264969380, 1842161313673506, 11570608166423524, 72674945645197500
Offset: 0

Views

Author

David Nacin, Jun 02 2017

Keywords

Examples

			For n=2 the a(2) = 64 - 14 = 50 sequences contain every combination except these fourteen: 01,10,12,21,23,32,34,43,45,54,56,65,67,76.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{7, -3, -10, 3}, {1, 8, 50, 314, 1972}, 40]
  • Python
    def a(n):
     if n in [0, 1, 2, 3, 4]:
      return [1, 8, 50, 314, 1972][n]
     return 7*a(n-1)-3*a(n-2)-10*a(n-3)+3*a(n-4)

Formula

For n>4, a(n) = 7*a(n-1) - 3*a(n-2) - 10*a(n-3) + 3*a(n-2), a(0)=1, a(1)=8, a(2)=50, a(3)=314, a(4)=1972.
G.f.: (-1 - x + 3 x^2 + 2 x^3 - x^4)/(-1 + 7 x - 3 x^2 - 10 x^3 + 3 x^4).

A287813 Number of octonary sequences of length n such that no two consecutive terms have distance 2.

Original entry on oeis.org

1, 8, 52, 340, 2224, 14548, 95164, 622504, 4072036, 26636740, 174241072, 1139777284, 7455717772, 48770692552, 319027694548, 2086881784180, 13651089405616, 89296980486772, 584125595190556, 3820988224873576, 24994540788543364, 163498820845182820
Offset: 0

Views

Author

David Nacin, Jun 02 2017

Keywords

Examples

			For n=2 the a(2) = 64 - 12 = 52 sequences contain every combination except these twelve: 02,20,13,31,24,42,35,53,46,64,57,75.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{7, -3}, {1, 8, 52}, 40]
  • Python
    def a(n):
     if n in [0, 1, 2]:
      return [1, 8, 52][n]
     return 7*a(n-1)-3*a(n-2)

Formula

For n>2, a(n) = 7*a(n-1) - 3*a(n-2), a(0)=1, a(1)=8, a(2)=52.
G.f.: (1 + x - x^2)/(1 - 7 x + 3 x^2).
a(n) = A190972(n) + A190972(n+1) - A190972(n-1). - R. J. Mathar, Oct 20 2019
Previous Showing 11-20 of 36 results. Next