A254599 Numbers of words on alphabet {0,1,...,9} with no subwords ii, for i from {0,1}.
1, 10, 98, 962, 9442, 92674, 909602, 8927810, 87627106, 860066434, 8441614754, 82855064258, 813228496354, 7981896981250, 78342900802082, 768941283068738, 7547214754035298, 74076463050867586, 727065885490090658, 7136204673817756610, 70042369148280534754
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (9,8).
Programs
-
Magma
[n le 1 select 10^n else 9*Self(n)+8*Self(n-1): n in [0..20]]; // Bruno Berselli, Feb 02 2015
-
Mathematica
RecurrenceTable[{a[0] == 1, a[1] == 10, a[n] == 9 a[n - 1] + 8 a[n - 2]}, a[n], {n, 0, 20}] (* Bruno Berselli, Feb 02 2015 *)
-
PARI
Vec((1 + x)/(1 - 9*x - 8*x^2) + O(x^30)) \\ Colin Barker, Jan 22 2017
Formula
a(n) = 9*a(n-1) + 8*a(n-2) with n>1, a(0) = 1, a(1) = 10.
G.f.: (1 + x)/(1 - 9*x - 8*x^2). - Bruno Berselli, Feb 02 2015
a(n) = (2^(-1-n)*((9-r)^n*(-11+r) + (9+r)^n*(11+r))) / r, where r=sqrt(113). - Colin Barker, Jan 22 2017
Comments