cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A213176 Numbers n such that (13^n + 4^n)/17 is prime.

Original entry on oeis.org

7, 11, 31, 59, 73, 137, 563, 34819, 48751, 73849
Offset: 1

Views

Author

Robert Price, May 03 2013

Keywords

Comments

All terms are prime.
a(11) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[ Prime[ Range[1, 100000] ], PrimeQ[ (13^# + 4^#)/17 ]& ]
  • PARI
    is(n)=ispseudoprime((13^n+4^n)/17) \\ Charles R Greathouse IV, Jun 06 2017

A227049 Numbers k such that (15^k + 4^k)/19 is prime.

Original entry on oeis.org

3, 31, 157, 239, 1553, 5521, 25561
Offset: 1

Views

Author

Robert Price, Jun 29 2013

Keywords

Comments

All terms are primes.
a(8) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[ Prime[ Range[1, 100000] ], PrimeQ[ (15^# + 4^#)/19 ]& ]
  • PARI
    is(n)=ispseudoprime((15^n+4^n)/19) \\ Charles R Greathouse IV, Jun 06 2017

A225397 Numbers n such that (16^n + 5^n)/21 is prime.

Original entry on oeis.org

31, 109, 373, 409, 619, 823, 1531, 6637, 70687
Offset: 1

Views

Author

Robert Price, Jul 25 2013

Keywords

Comments

All terms are primes.
a(10) > 10^5.

Crossrefs

Programs

  • Mathematica
    k=16; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n, 1, 9592}]
  • PARI
    is(n)=ispseudoprime((16^n+5^n)/21) \\ Charles R Greathouse IV, Jun 13 2017
Previous Showing 21-23 of 23 results.