A213176
Numbers n such that (13^n + 4^n)/17 is prime.
Original entry on oeis.org
7, 11, 31, 59, 73, 137, 563, 34819, 48751, 73849
Offset: 1
-
Select[ Prime[ Range[1, 100000] ], PrimeQ[ (13^# + 4^#)/17 ]& ]
-
is(n)=ispseudoprime((13^n+4^n)/17) \\ Charles R Greathouse IV, Jun 06 2017
A227049
Numbers k such that (15^k + 4^k)/19 is prime.
Original entry on oeis.org
3, 31, 157, 239, 1553, 5521, 25561
Offset: 1
-
Select[ Prime[ Range[1, 100000] ], PrimeQ[ (15^# + 4^#)/19 ]& ]
-
is(n)=ispseudoprime((15^n+4^n)/19) \\ Charles R Greathouse IV, Jun 06 2017
A225397
Numbers n such that (16^n + 5^n)/21 is prime.
Original entry on oeis.org
31, 109, 373, 409, 619, 823, 1531, 6637, 70687
Offset: 1
-
k=16; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n, 1, 9592}]
-
is(n)=ispseudoprime((16^n+5^n)/21) \\ Charles R Greathouse IV, Jun 13 2017
Comments