cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A130262 Partial sums of the 'upper' even Fibonacci Inverse A130260.

Original entry on oeis.org

0, 1, 3, 5, 8, 11, 14, 17, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 77, 82, 87, 92, 97, 102, 107, 112, 117, 122, 127, 132, 137, 142, 147, 152, 157, 162, 167, 172, 177, 182, 187, 192, 197, 202, 207, 212, 217, 222, 227, 232, 237, 242, 248, 254, 260, 266
Offset: 0

Views

Author

Hieronymus Fischer, May 25 2007

Keywords

Crossrefs

Programs

  • Magma
    [0] cat [(&+[ Ceiling(Log(Sqrt(5)*k)/(2*Log((1+ Sqrt(5))/2))): k in [1..n]]): n in [1..50]]; // G. C. Greubel, Sep 12 2018
  • Mathematica
    Table[Sum[Ceiling[Log[GoldenRatio, Sqrt[5]*k]/2], {k, 1, n}], {n, 0, 60}] (* G. C. Greubel, Sep 12 2018 *)
  • PARI
    for(n=0, 50, print1(sum(k=1,n, ceil(log(sqrt(5)*k)/(2*log((1+ sqrt(5))/2)))), ", ")) \\ G. C. Greubel, Sep 12 2018
    

Formula

a(n) = n*A130260(n) - A001519(A130260(n)) + 1.
a(n) = n*A130260(n) - Fib(2*A130260(n)-1) + 1.
G.f.: g(x)=x/(1-x)^2*Sum_{k>=0} x^Fib(2*k).

A130473 Partial sums of A087172.

Original entry on oeis.org

1, 3, 6, 9, 14, 19, 24, 32, 40, 48, 56, 64, 77, 90, 103, 116, 129, 142, 155, 168, 189, 210, 231, 252, 273, 294, 315, 336, 357, 378, 399, 420, 441, 475, 509, 543, 577, 611, 645, 679, 713, 747, 781, 815, 849, 883, 917, 951, 985, 1019, 1053, 1087, 1121, 1155, 1210
Offset: 1

Views

Author

Hieronymus Fischer, May 28 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Flatten[Map[ConstantArray[Fibonacci[#],Fibonacci[#-1]]&,Range[15]]]] (* Peter J. C. Moses, May 02 2022 *)

Formula

a(n) = (1/2)*(Fib(2*b(n)+1) - 3*Fib(b(n))*Fib(b(n)+1)-1) + (n+1)*Fib(b(n)) where b(n) = A130233(n) = A130234(n+1)-1 and Fib(n)=A000045(n).
Previous Showing 11-12 of 12 results.