cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A130247 Inverse Lucas (A000032) numbers: index k of a Lucas number such that Lucas(k)=n; max(k|Lucas(k) < n), if there is no such index.

Original entry on oeis.org

1, 0, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
Offset: 1

Views

Author

Hieronymus Fischer, May 19 2007, Jul 02 2007

Keywords

Comments

Inverse of the Lucas sequence (A000032), since a(Lucas(n))=n for n >= 0 (see A130241 and A130242 for other versions). Same as A130241 except for n=1.

Examples

			a(2)=0, since Lucas(0)=2; a(10)=4, since Lucas(4) = 7 < 10 but Lucas(5) = 11 > 10.
		

Crossrefs

For partial sums see A130248. Other related sequences: A000032, A130241, A130242, A130245, A130249, A130255, A130259. Indicator sequence A102460. For Fibonacci inverse see A130233 - A130240, A104162.

Programs

  • Mathematica
    Join[{1, 0}, Table[Floor[Log[GoldenRatio, n + 1/2]], {n, 3, 50}]] (* G. C. Greubel, Dec 21 2017 *)
  • Python
    from itertools import islice, count
    def A130247_gen(): # generator of terms
        yield from (1,0)
        a, b = 3, 4
        for i in count(2):
            yield from (i,)*(b-a)
            a, b = b, a+b
    A130247_list = list(islice(A130247_gen(),40)) # Chai Wah Wu, Jun 08 2022

Formula

a(n)=c(n), if (n^2-4)/5 is a square number, a(n)=s(n), if (n^2+4)/5 is a square number and a(n)=floor(log_phi(n)) otherwise, where s(n)=floor(arcsinh(n/2)/log(phi)), c(n)=floor(arccosh(n/2)/log(phi)) and phi=(1+sqrt(5))/2.
a(n) = A130241(n) except for n=2.
G.f.: g(x) = (1/(1-x))*(Sum_{k>=1} x^Lucas(k)) - x^2.
a(n) = floor(log_phi(n+1/2)) for n >= 3, where phi is the golden ratio.

A130258 Partial sums of the 'upper' odd Fibonacci Inverse A130256.

Original entry on oeis.org

0, 0, 2, 5, 8, 11, 15, 19, 23, 27, 31, 35, 39, 43, 48, 53, 58, 63, 68, 73, 78, 83, 88, 93, 98, 103, 108, 113, 118, 123, 128, 133, 138, 143, 148, 154, 160, 166, 172, 178, 184, 190, 196, 202, 208, 214, 220, 226, 232, 238, 244, 250, 256, 262, 268, 274, 280, 286, 292
Offset: 0

Views

Author

Hieronymus Fischer, May 24 2007

Keywords

Crossrefs

Programs

  • Magma
    [0,0] cat [(&+[Ceiling((1/2)*(1 + Log(Sqrt(5)*k-1)/Log((1+Sqrt(5))/2))): k in [2..n]]): n in [2..50]]; // G. C. Greubel, Sep 13 2018
  • Mathematica
    Table[Sum[Ceiling[1/2*(1 + Log[GoldenRatio, (Sqrt[5]*k - 1)])], {k,2,n}], {n, 0, 50}] (* G. C. Greubel, Sep 13 2018 *)
  • PARI
    for(n=0, 50, print1(if(n==0, 0, if(n==1, 0, sum(k=2, n, ceil( (1/2)*(1 + log(sqrt(5)*k - 1)/log((1+sqrt(5))/2)))))), ", ")) \\ G. C. Greubel, Sep 13 2018
    

Formula

a(n) = n*A130256(n) - A001906(A130256(n) -1).
a(n) = n*A130256(n) - Fib(2*A130256(n)-2) - 1.
G.f.: g(x) = x/(1-x)^2*Sum_{k>=0} x^Fib(2*k-1).

A130262 Partial sums of the 'upper' even Fibonacci Inverse A130260.

Original entry on oeis.org

0, 1, 3, 5, 8, 11, 14, 17, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 77, 82, 87, 92, 97, 102, 107, 112, 117, 122, 127, 132, 137, 142, 147, 152, 157, 162, 167, 172, 177, 182, 187, 192, 197, 202, 207, 212, 217, 222, 227, 232, 237, 242, 248, 254, 260, 266
Offset: 0

Views

Author

Hieronymus Fischer, May 25 2007

Keywords

Crossrefs

Programs

  • Magma
    [0] cat [(&+[ Ceiling(Log(Sqrt(5)*k)/(2*Log((1+ Sqrt(5))/2))): k in [1..n]]): n in [1..50]]; // G. C. Greubel, Sep 12 2018
  • Mathematica
    Table[Sum[Ceiling[Log[GoldenRatio, Sqrt[5]*k]/2], {k, 1, n}], {n, 0, 60}] (* G. C. Greubel, Sep 12 2018 *)
  • PARI
    for(n=0, 50, print1(sum(k=1,n, ceil(log(sqrt(5)*k)/(2*log((1+ sqrt(5))/2)))), ", ")) \\ G. C. Greubel, Sep 12 2018
    

Formula

a(n) = n*A130260(n) - A001519(A130260(n)) + 1.
a(n) = n*A130260(n) - Fib(2*A130260(n)-1) + 1.
G.f.: g(x)=x/(1-x)^2*Sum_{k>=0} x^Fib(2*k).

A352717 Greatest Lucas number that does not exceed n.

Original entry on oeis.org

1, 1, 3, 4, 4, 4, 7, 7, 7, 7, 11, 11, 11, 11, 11, 11, 11, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47
Offset: 1

Views

Author

Clark Kimberling, Apr 01 2022

Keywords

Examples

			The Lucas numbers, beginning with 1, are 1, 3, 4, 7, 11, 18, ..., so that a(5) = 4.
		

Crossrefs

Programs

  • Mathematica
    Flatten[Map[ConstantArray[LucasL[#], LucasL[# - 1]] &, Range[15]]] (* Peter J. C. Moses, Apr 30 2022 *)
  • Python
    from itertools import islice
    def A352717_gen(): # generator of terms
        a, b = 1, 3
        while True:
            yield from (a,)*(b-a)
            a, b = b, a+b
    A352717_list = list(islice(A352717_gen(),40)) # Chai Wah Wu, Jun 08 2022
Previous Showing 21-24 of 24 results.