cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A130955 Signature permutation of a Catalan automorphism: row 14 of A130402.

Original entry on oeis.org

0, 1, 3, 2, 7, 8, 4, 6, 5, 20, 18, 22, 17, 21, 10, 9, 14, 19, 16, 11, 15, 12, 13, 55, 57, 50, 61, 49, 63, 64, 45, 48, 54, 58, 46, 62, 59, 26, 27, 23, 25, 24, 38, 37, 51, 60, 56, 42, 44, 53, 47, 29, 28, 39, 52, 43, 30, 40, 31, 32, 33, 41, 34, 35, 36, 167, 161, 173, 162, 183
Offset: 0

Views

Author

Antti Karttunen, Jun 11 2007

Keywords

Crossrefs

Inverse: A130956.

A130957 Signature permutation of a Catalan automorphism: row 15 of A130402.

Original entry on oeis.org

0, 1, 3, 2, 7, 8, 6, 5, 4, 18, 17, 20, 21, 22, 16, 19, 15, 12, 13, 14, 11, 9, 10, 50, 49, 48, 45, 46, 55, 54, 57, 59, 58, 61, 62, 64, 63, 47, 44, 53, 56, 60, 43, 52, 40, 31, 32, 41, 34, 35, 36, 42, 51, 39, 30, 33, 37, 28, 23, 24, 38, 29, 25, 26, 27, 148, 147, 146, 142, 143
Offset: 0

Views

Author

Antti Karttunen, Jun 11 2007

Keywords

Crossrefs

Inverse: A130958.

A130959 Signature permutation of a Catalan automorphism: row 16 of A130402.

Original entry on oeis.org

0, 1, 3, 2, 7, 8, 5, 6, 4, 20, 17, 21, 18, 22, 13, 12, 15, 19, 16, 11, 14, 9, 10, 54, 61, 45, 57, 46, 58, 62, 50, 48, 55, 59, 49, 64, 63, 35, 36, 32, 34, 31, 41, 40, 52, 60, 56, 43, 47, 53, 44, 33, 30, 39, 51, 42, 28, 37, 23, 24, 29, 38, 25, 26, 27, 180, 158, 192, 157, 187
Offset: 0

Views

Author

Antti Karttunen, Jun 11 2007

Keywords

Crossrefs

Inverse: A130960.

A130961 Signature permutation of a Catalan automorphism: row 18 of A130402.

Original entry on oeis.org

0, 1, 3, 2, 6, 8, 7, 4, 5, 19, 15, 14, 22, 20, 16, 21, 17, 9, 10, 18, 11, 12, 13, 52, 53, 60, 41, 39, 51, 40, 37, 64, 62, 38, 61, 54, 55, 56, 43, 42, 63, 57, 44, 58, 45, 23, 24, 46, 25, 26, 27, 47, 59, 48, 28, 29, 49, 30, 31, 32, 50, 33, 34, 35, 36, 155, 151, 153, 159, 179
Offset: 0

Views

Author

Antti Karttunen, Jun 11 2007

Keywords

Crossrefs

Inverse: A130962.

A130963 Signature permutation of a Catalan automorphism: row 19 of A130402.

Original entry on oeis.org

0, 1, 3, 2, 7, 6, 8, 4, 5, 17, 16, 18, 14, 15, 22, 19, 20, 9, 10, 21, 11, 12, 13, 45, 44, 46, 42, 43, 50, 47, 48, 37, 38, 49, 39, 40, 41, 62, 60, 63, 51, 52, 61, 53, 54, 23, 24, 55, 25, 26, 27, 64, 56, 57, 28, 29, 58, 30, 31, 32, 59, 33, 34, 35, 36, 129, 128, 130, 126, 127
Offset: 0

Views

Author

Antti Karttunen, Jun 11 2007

Keywords

Crossrefs

Inverse: A130964.

A130965 Signature permutation of a Catalan automorphism: row 20 of A130402.

Original entry on oeis.org

0, 1, 3, 2, 6, 7, 8, 4, 5, 16, 14, 15, 17, 18, 19, 22, 21, 9, 10, 20, 11, 12, 13, 42, 44, 47, 37, 38, 43, 41, 40, 45, 46, 39, 48, 49, 50, 60, 51, 52, 63, 62, 56, 64, 58, 23, 24, 59, 25, 26, 27, 53, 61, 57, 28, 29, 54, 30, 31, 32, 55, 33, 34, 35, 36, 126, 121, 122, 128, 131
Offset: 0

Views

Author

Antti Karttunen, Jun 11 2007

Keywords

Crossrefs

Inverse: A130966.

A069768 Signature-permutation of Catalan bijection "Knack".

Original entry on oeis.org

0, 1, 3, 2, 8, 7, 6, 4, 5, 22, 21, 20, 17, 18, 19, 16, 14, 9, 10, 15, 11, 12, 13, 64, 63, 62, 58, 59, 61, 57, 54, 45, 46, 55, 48, 49, 50, 60, 56, 53, 44, 47, 51, 42, 37, 23, 24, 38, 25, 26, 27, 52, 43, 39, 28, 29, 40, 30, 31, 32, 41, 33, 34, 35, 36, 196, 195, 194, 189, 190
Offset: 0

Views

Author

Antti Karttunen, Apr 16 2002; entry revised Dec 20 2008

Keywords

Comments

This automorphism of binary trees first swaps the left and right subtree of the root and then proceeds recursively to the (new) left subtree, to do the same operation there. This is one of those Catalan bijections which extend to a unique automorphism of the infinite binary tree, which in this case is A153142. See further comments there and in A153141.
This bijection, Knack, is a ENIPS-transformation of the simple swap: ENIPS(*A069770) (i.e., row 1 of A122204). Furthermore, Knack and Knick (the inverse, A069767) have a special property, that FORK and KROF transforms (explained in A122201 and A122202) transform them to their own inverses, i.e., to each other: FORK(Knick) = KROF(Knick) = Knack and FORK(Knack) = KROF(Knack) = Knick, thus this occurs also as row 1 in A122288 and naturally, the double-fork fixes both, e.g., FORK(FORK(Knack)) = Knack.
Note: the name in Finnish is "Naks".

References

  • A. Karttunen, paper in preparation.

Crossrefs

Inverse permutation: "Knick", A069767. "n-th powers" (i.e. n-fold applications), from n=2 to 6: A073291, A073293, A073295, A073297, A073299.
In range [A014137(n-1)..A014138(n-1)] of this permutation, the number of cycles is A073431, number of fixed points: A036987 (Fixed points themselves: A084108), Max. cycle size & LCM of all cycle sizes: A011782. See also: A074080.
A127302(a(n)) = A127302(n) for all n. a(n) = A057162(A057508(n)) = A069769(A057162(n))
Row 1 of A122204 and A122288, row 21 of A122285 and A130402, row 8 of A073200.
See also bijections A073287, A082346, A082347, A082350, A130342.

A130403 Signature permutations of SPINE-transformations of A057163-conjugates of Catalan automorphisms in table A122204.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 2, 2, 1, 0, 5, 7, 3, 2, 1, 0, 6, 8, 4, 3, 2, 1, 0, 7, 6, 5, 4, 3, 2, 1, 0, 8, 4, 7, 5, 4, 3, 2, 1, 0, 9, 5, 6, 6, 5, 4, 3, 2, 1, 0, 10, 17, 8, 8, 8, 5, 4, 3, 2, 1, 0, 11, 18, 9, 7, 6, 8, 5, 5, 3, 2, 1, 0, 12, 20, 10, 9, 7, 7, 7, 4, 4, 3, 2, 1, 0, 13, 21, 12, 10, 9, 6
Offset: 0

Views

Author

Antti Karttunen, Jun 11 2007

Keywords

Comments

Row n is the signature permutation of the Catalan automorphism which is obtained from A057163-conjugate of the n-th automorphism in the table A122204 with the recursion scheme "SPINE", i.e. row n is obtained as SPINE(A057163 o ENIPS(A089840[n]) o A057163). See A122203 and A122204 for the description of SPINE and ENIPS. Each row occurs only once in this table. Inverses of these permutations can be found in table A130402. This table contains also all the rows of A122203 and A089840.

Crossrefs

Cf. The first 22 rows of this table: row 0 (identity permutation): A001477, 1: A082345, 2: A130936, 3: A073288, 4: A130942, 5: A130940, 6: A130938, 7: A130944, 8: A130946, 9: A130952, 10: A130950, 11: A130948, 12: A057161, 13: A130962, 14: A130964, 15: A069767, 16: A130966, 17: A074688, 18: A130954, 19: A130956, 20: A130960, 21: A130958, Other rows: 169: A069770, 3617: A082339, 65167: A057501.
Cf. As a sequence differs from A130403 for the first time at n=92, where a(n)=21, while A130403(n)=22.

A130400 Signature permutations of INORDER-transformations of non-recursive Catalan automorphisms in table A089840.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 2, 2, 1, 0, 5, 7, 3, 2, 1, 0, 6, 8, 4, 3, 2, 1, 0, 7, 6, 6, 5, 3, 2, 1, 0, 8, 4, 5, 4, 5, 3, 2, 1, 0, 9, 5, 7, 6, 6, 6, 3, 2, 1, 0, 10, 17, 8, 7, 4, 5, 6, 3, 2, 1, 0, 11, 18, 9, 8, 7, 4, 4, 4, 3, 2, 1, 0, 12, 20, 11, 12, 8, 7, 5, 5, 4, 3, 2, 1, 0, 13, 21, 14, 13, 12
Offset: 0

Views

Author

Antti Karttunen, Jun 11 2007

Keywords

Comments

Row n is the signature permutation of the Catalan automorphism which is obtained from the n-th nonrecursive automorphism in the table A089840 with the recursion scheme "INORDER". In this recursion scheme the given automorphism is applied at the root of binary tree after the algorithm has recursed down the car-branch (the left hand side tree in the context of binary trees), but before the algorithm recurses down to the cdr-branch (the right hand side of the binary tree, with respect to the new orientation of branches, possibly changed by the applied automorphism). I.e. this corresponds to the depth-first in-order traversal of a Catalan structure, when it is interpreted as a binary tree. The associated Scheme-procedures INORDER and !INORDER can be used to obtain such a transformed automorphism from any constructively (or respectively: destructively) implemented automorphism. Each row occurs only once in this table and similar notes as given e.g. for table A122202 apply here, e.g. the rows of A089840 all occur here as well. This transformation has many fixed points besides the trivial identity automorphism *A001477: at least *A069770, *A089863 and *A129604 stay as they are. Inverses of these permutations can be found in table A130401.

Crossrefs

Cf. The first 22 rows of this table: row 0 (identity permutation): A001477, 1: A069770, 2: A073284, 3: A122341, 4: A130381, 5: A130383, 6: A130385, 7: A122350, 8: A082341, 9: A130387, 10: A130389, 11: A130391, 13: A130393, 14: A130395, 15: A130397, 16: A130927, 17: A071657, 18: A130929, 19: A130931, 20: A130933, 21: A089863. Other rows: row 1654694: A073280, row 1654720: A129604.
Cf. As a sequence differs from A130401 for the first time at n=80, where a(n)=11, while A130401(n)=14.

Programs

  • Scheme
    (define (INORDER f) (letrec ((g (lambda (s) (cond ((not (pair? s)) s) (else (let ((t (f (cons (g (car s)) (cdr s))))) (cons (car t) (g (cdr t))))))))) g))
    (define (!INORDER f!) (letrec ((g! (lambda (s) (cond ((pair? s) (g! (car s)) (f! s) (g! (cdr s)))) s))) g!))

A130401 Signature permutations of REDRONI-transformations of non-recursive Catalan automorphisms in table A089840.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 2, 2, 1, 0, 5, 7, 3, 2, 1, 0, 6, 8, 4, 3, 2, 1, 0, 7, 6, 6, 5, 3, 2, 1, 0, 8, 4, 5, 4, 5, 3, 2, 1, 0, 9, 5, 7, 6, 6, 6, 3, 2, 1, 0, 10, 17, 8, 7, 4, 5, 6, 3, 2, 1, 0, 11, 18, 9, 8, 7, 4, 4, 4, 3, 2, 1, 0, 12, 20, 14, 13, 8, 7, 5, 5, 4, 3, 2, 1, 0, 13, 21, 10, 12, 13
Offset: 0

Views

Author

Antti Karttunen, Jun 11 2007

Keywords

Comments

Row n is the signature permutation of the Catalan automorphism which is obtained from the n-th nonrecursive automorphism in the table A089840 with the recursion scheme "REDRONI". In this recursion scheme the given automorphism is applied at the root of binary tree after the algorithm has recursed down the cdr-branch (the right hand side tree in the context of binary trees), but before the algorithm recurses down to the car-branch (the left hand side of the binary tree, with respect to the new orientation of branches, possibly changed by the applied automorphism). I.e. this corresponds to the reversed depth-first in-order traversal of a Catalan structure, when it is interpreted as a binary tree. The associated Scheme-procedures REDRONI and !REDRONI can be used to obtain such a transformed automorphism from any constructively (or respectively: destructively) implemented automorphism. Each row occurs only once in this table and similar notes as given e.g. for table A122202 apply here, e.g. the rows of A089840 all occur here as well. This transformation has many fixed points besides the trivial identity automorphism *A001477: at least *A069770, *A089859 and *A129604 stay as they are. Inverses of these permutations can be found in table A130400.

Crossrefs

Cf. The first 22 rows of this table: row 0 (identity permutation): A001477, 1: A069770, 2: A073285, 3: A122342, 4: A130386, 5: A130384, 6: A130382, 7: A122349, 8: A082342, 9: A130392, 10: A130390, 11: A130388, 12: A071658, 13: A130930, 14: A130932, 15: A089859, 16: A130934, 18: A130394, 19: A130396, 20: A130928, 21: A130398. Other rows: row 1654694: A073280, row 1654720: A129604.
Cf. As a sequence differs from A130400 for the first time at n=80, where a(n)=14, while A130401(n)=11.
Previous Showing 11-20 of 21 results. Next