cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A354785 Numbers of the form 3*2^k or 9*2^k.

Original entry on oeis.org

3, 6, 9, 12, 18, 24, 36, 48, 72, 96, 144, 192, 288, 384, 576, 768, 1152, 1536, 2304, 3072, 4608, 6144, 9216, 12288, 18432, 24576, 36864, 49152, 73728, 98304, 147456, 196608, 294912, 393216, 589824, 786432, 1179648, 1572864, 2359296, 3145728, 4718592, 6291456, 9437184, 12582912, 18874368, 25165824, 37748736, 50331648
Offset: 1

Views

Author

N. J. A. Sloane, Jul 12 2022

Keywords

Crossrefs

The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent: A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A060482, A136252 (minor differences from A354788 at the start); A354785 (3*s(n)), A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283.

Programs

  • Mathematica
    seq[max_] := Union[Table[3*2^n, {n, 0, Floor[Log2[max/3]]}], Table[9*2^n, {n, 0, Floor[Log2[max/9]]}]]; seq[10^8] (* Amiram Eldar, Jan 16 2024 *)

Formula

Sum_{n>=1} 1/a(n) = 8/9. - Amiram Eldar, Jan 16 2024
G.f.: (3*x^2+6*x+3)/(1-2*x^2). - Georg Fischer, Apr 10 2025

A356695 Expansion of x*(1+x-7*x^3-3*x^4+x^5)/(1-2*x^2-9*x^3+3*x^5).

Original entry on oeis.org

1, 1, 2, 4, 10, 24, 53, 132, 310, 711, 1736, 4053, 9475, 22800, 53294, 125667, 299629, 702555, 1661861, 3941889, 9269716, 21941640, 51908768, 122325141, 289466629, 684020046, 1614034607, 3817513449, 9017274205, 21292938474, 50340109313, 118899240972
Offset: 1

Views

Author

R. J. Mathar, Aug 23 2022

Keywords

Comments

Number of Catalan words of length n avoiding the pattern 1111 of length 4.

Crossrefs

Cf. A131572 (length 3).

Formula

G.f.: x*(1+x-7*x^3-3*x^4+x^5)/(1-2*x^2-9*x^3+3*x^5).
a(n) = 2*a(n-2) + 9*a(n-3) - 3*a(n-5). - Wesley Ivan Hurt, Apr 20 2023
Previous Showing 21-22 of 22 results.