cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A346677 Triangular array read by rows. T(n,k) is the number of n X n matrices over GF(2) that can be decomposed as the direct sum of k cyclic matrices, 0<=k<=n, n>=0.

Original entry on oeis.org

1, 0, 2, 0, 8, 8, 0, 132, 322, 58, 0, 10752, 36412, 17570, 802, 0, 3185280, 16923024, 11693324, 1731970, 20834, 0, 5279662080, 26989750656, 30003846992, 6109974636, 335190786, 1051586, 0, 28343145922560, 196717668747264, 247267921788288, 84586214764240, 5906325116460, 128574848514, 102233986
Offset: 0

Views

Author

Geoffrey Critzer, Jul 28 2021

Keywords

Examples

			Triangle begins:
  1;
  0,       2;
  0,       8,        8;
  0,     132,      322,       58;
  0,   10752,    36412,    17570,     802;
  0, 3185280, 16923024, 11693324, 1731970, 20834;
  ...
		

Crossrefs

Cf. A002416 (row sums) A132186 (main diagonal).

Programs

  • Mathematica
    nn = 6; q = 2; b[p_, i_] := Count[p, i];
    d[p_, i_] := Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}];
    aut[deg_, p_] :=  Product[Product[q^(d[p, i] deg) - q^((d[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1, Total[p]}];
    A001037 = Table[1/n Sum[MoebiusMu[n/d] q^d, {d, Divisors[n]}], {n, 1, nn}];
    g[u_, v_, deg_] :=  Total[Map[v^Length[#] u^(deg Total[#])/aut[deg, #] &, Level[Table[IntegerPartitions[n], {n, 0, nn}], {2}]]];
    Table[Take[(Table[Product[q^n - q^i, {i, 0, n - 1}], {n, 0, nn}] CoefficientList[Series[Product[g[u, v, deg]^A001037[[deg]], {deg, 1, nn}], {u, 0, nn}], {u, v}])[[n]], n], {n, 1, nn}] // Grid

A357410 a(n) is the number of covering relations in the poset P of n X n idempotent matrices over GF(2) ordered by A <= B if and only if AB = BA = A.

Original entry on oeis.org

0, 1, 12, 224, 6960, 397792, 42001344, 8547291008, 3336917303040, 2565880599084544, 3852698988517260288, 11517943538435677485056, 67829192662051610706309120, 799669932659456441970547744768, 18652191511341505602408972738871296, 873360272626100960024734923878091948032
Offset: 0

Views

Author

Geoffrey Critzer, Sep 26 2022

Keywords

Comments

The order given for P in the title is equivalent to the ordering: A <= B if and only if image(A) is contained in image(B) and null(A) contains null(B). Then A is covered by B if and only if there is a 1-dimensional subspace U such that image(B) = image(A) direct sum U. If such a subspace U exists then it is unique and is equal to the intersection of null(A) with image(B). The number of maximal chains in P is A002884(n). The set of all idempotent matrices over GF(q) with this ordering is a binomial poset with factorial function |GL_n(F_q)|/(q-1)^n. (see Stanley reference).

Examples

			a(2) = 12 because there are A132186(2) = 8 idempotent 2 X 2 matrices over GF(2).  The identity matrix covers 6 rank 1 matrices each of which covers the zero matrix for a total of 12 covering relations.  Cf. A296548.
		

References

  • R. P. Stanley, Enumerative Combinatorics, Vol I, second edition, page 320.

Crossrefs

Programs

  • Mathematica
    nn = 15; B[q_, n_] := Product[q^n - q^i, {i, 0, n - 1}]/(q - 1)^n;
    e[q_, u_] := Sum[u^n/B[q, n], {n, 0, nn}];Table[B[2, n], {n, 0, nn}] CoefficientList[Series[e[2, u] u e[2, u], {u, 0, nn}], u]

Formula

Sum_{n>=0} a(n) x^n/B(n) = x * (Sum_{n>=0} x^n/B(n))^2 where B(n) = A002884(n).
Previous Showing 11-12 of 12 results.