A145002
Denominators of an Egyptian fraction for 1/Sqrt[28] = 0.1889822365...
Original entry on oeis.org
6, 45, 10713, 324564970, 180179551708668257, 66100039883449216745724149409859980, 5970964373869392740489950614747811004676487208587055130790649750452409
Offset: 1
A069139,
A006487,
A006526,
A006525,
A006524,
A001466,
A110820,
A117116,
A118323,
A118324,
A118325,
A144835,
A132480-
A132574,
A069261,
A144984-
A145003
-
a = {}; k = N[1/Sqrt[28], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)
A248236
Egyptian fraction representation of sqrt(6) (A010464) using a greedy function.
Original entry on oeis.org
2, 3, 9, 199, 49572, 30799364495, 1408429952507887000310, 3677260735023142918878205127156519291320765, 102293202370266874495262346614859561910266026424997387777849999466054887759064682698213
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 6]]
A248237
Egyptian fraction representation of sqrt(7) (A010465) using a greedy function.
Original entry on oeis.org
2, 2, 7, 346, 250326, 159992246122, 43126926376468440463866, 2067900185855597116733968004943580535040713497, 14833490144163739987168640921306687956266487136609932761918465200939453258507455567518894133
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 7]]
A248238
Egyptian fraction representation of sqrt(8) (A010466) using a greedy function.
Original entry on oeis.org
2, 2, 4, 13, 665, 3467111, 21396320062803, 658294037732639489281287503, 22388829144690900907571301740725846339553919136567283158, 522702581366233755060474792093646176756253098085471164612763539572950704431022333880928617340303584572474648760
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 8]]
A248240
Egyptian fraction representation of sqrt(11) (A010468) using a greedy function.
Original entry on oeis.org
3, 4, 16, 243, 104559, 25176928409, 26586186736052347315834, 1862816215759124563815793524962166009780011752, 5214712907768239185916350444296489272388117885310572145230445264540008760076034857528421553
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 11]]
A248241
Egyptian fraction representation of sqrt(12) (A010469) using a greedy function.
Original entry on oeis.org
3, 3, 8, 174, 47270, 3322246062, 13585339584457844199, 266643312158266377656241697792775202384, 221110316712057155914682414678073188192934894445719392090279403577596961625414
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter >
0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 12]]
A248243
Egyptian fraction representation of sqrt(14) (A010471) using a greedy function.
Original entry on oeis.org
3, 2, 5, 25, 604, 568947, 524109421430, 456412587974094208278324, 217923503007735559214372603301923745039374715408, 53829867761684622028477476025136774072620218179339699337234480313626745601639126196448075512614
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 14]]
A248244
Egyptian fraction representation of sqrt(15) (A010472) using a greedy function.
Original entry on oeis.org
3, 2, 3, 26, 842, 1210718, 3125731485713, 19754948045006045983659938, 1065761639370207788402744631308304462734917602085737, 324026619188969581072902747191745217929877633476958459802312813323913819842709323919885352524528244937458
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 15]]
A248246
Egyptian fraction representation of sqrt(18) (A010474) using a greedy function.
Original entry on oeis.org
4, 5, 24, 1027, 3219387, 102715635003972, 28595657331015533671660837004, 1215572475769570408109978391934299568566509985905302163092, 2006120697781748129559395265597556700767017998650179835542888817906954377068504244660639847221485156172682330027607
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 18]]
A248247
Egyptian fraction representation of sqrt(19) (A010475) using a greedy function.
Original entry on oeis.org
4, 3, 40, 1769, 3133987, 24555734311137, 5553769558933640154963528048, 58425567381851662534231519139184106852906758833242204348, 8289351943967938706857419188398816898988729770105649746642711092034483624446711151502281270880844114102012375418
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 19]]