cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A231878 Numbers k such that bigomega(k)^2 (cf. A001222) divides k.

Original entry on oeis.org

2, 3, 4, 5, 7, 11, 13, 16, 17, 18, 19, 23, 27, 29, 31, 37, 41, 43, 45, 47, 53, 59, 61, 63, 67, 71, 73, 79, 83, 89, 97, 99, 101, 103, 107, 109, 113, 117, 127, 131, 137, 139, 144, 149, 151, 153, 157, 163, 167, 171, 173, 179, 181, 191, 193, 197, 199, 200, 207, 211, 216, 223, 227, 229, 233, 239, 241, 251, 256, 257, 261, 263
Offset: 1

Views

Author

N. J. A. Sloane, Nov 17 2013

Keywords

Comments

Contains all primes. - Ivan Neretin, Apr 05 2016

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 265], Divisible[#, PrimeOmega[#]^2] &] (* Ivan Neretin, Apr 05 2016 *)
  • PARI
    isok(n) = !(n % bigomega(n)^2); \\ Michel Marcus, Apr 05 2016

A231879 Numbers n such that bigomega(n)^2 (cf. A001222) does not divide n.

Original entry on oeis.org

1, 6, 8, 9, 10, 12, 14, 15, 20, 21, 22, 24, 25, 26, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 100, 102, 104, 105, 106, 108, 110, 111, 112, 114, 115
Offset: 1

Views

Author

N. J. A. Sloane, Nov 17 2013

Keywords

Comments

Contains all semiprimes (A001358) except 4. - Ivan Neretin, Apr 05 2016

Crossrefs

Programs

  • Mathematica
    Join[{1}, Select[Range[2, 115], ! Divisible[#, PrimeOmega[#]^2] &]] (* Ivan Neretin, Apr 05 2016 *)
  • PARI
    lista(nn) = {print1(1, ", "); for(n=2, nn, if(n % bigomega(n)^2 != 0, print1(n, ", ")));} \\ Altug Alkan, Apr 05 2016
Previous Showing 11-12 of 12 results.