A134615 Numbers (excluding primes and powers of primes) such that the root mean cube of their prime factors is a prime (where the root mean cube of c and d is ((c^3+d^3)/2)^(1/3)).
707265, 1922816, 2284389, 12023505, 14689836, 21150800, 29444140, 30682000, 36533504, 39372480, 46309837, 52163097, 67303740, 73558065, 85751055, 107366283, 115291904, 161976045, 190384425, 204399585, 218317275, 231443940, 274960400, 286618640
Offset: 1
Keywords
Examples
a(1) = 707265, since 707265 = 3*3*3*5*13*13*31 and ((3*3^3+5^3+2*13^3+31^3)/7)^(1/3) = 4913^(1/3) = 17.
Links
- Hieronymus Fischer, Table of n, a(n) for n = 1..108
Crossrefs
Programs
-
PARI
isok(n) = {if (omega(n) == 1, return (0)); f = factor(n); s = sum(i=1, #f~, f[i,2]*f[i,1]^3); s = s/bigomega(n); if (type(s) != "t_INT", return (0)); if (! ispower(s, 3, &p), return (0)); isprime(p);} \\ Michel Marcus, Nov 03 2013
Extensions
More terms and minor edits by Hieronymus Fischer, May 06 2013, May 30 2013
Comments