cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A304977 Number of unlabeled hyperforests spanning n vertices with singleton edges allowed.

Original entry on oeis.org

1, 1, 4, 14, 55, 235, 1112, 5672, 30783, 175733, 1042812, 6385278, 40093375, 257031667, 1676581863, 11098295287, 74401300872, 504290610004, 3451219615401, 23821766422463, 165684694539918, 1160267446543182, 8175446407807625, 57928670942338011, 412561582740147643
Offset: 0

Views

Author

Gus Wiseman, May 22 2018

Keywords

Examples

			Non-isomorphic representatives of the a(3) = 14 hyperforests are the following:
  {{1,2,3}}
  {{3},{1,2}}
  {{3},{1,2,3}}
  {{1,3},{2,3}}
  {{1},{2},{3}}
  {{2},{3},{1,3}}
  {{2},{3},{1,2,3}}
  {{3},{1,2},{2,3}}
  {{3},{1,3},{2,3}}
  {{1},{2},{3},{2,3}}
  {{1},{2},{3},{1,2,3}}
  {{2},{3},{1,2},{1,3}}
  {{2},{3},{1,3},{2,3}}
  {{1},{2},{3},{1,3},{2,3}}
		

Crossrefs

Programs

  • PARI
    \\ here b(n) is A318494 as vector
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    b(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerT(EulerT(2*v)))); v}
    seq(n)={my(u=2*b(n)); concat([1], EulerT(Vec(Ser(EulerT(u))*(1-x*Ser(u))-1)))} \\ Andrew Howroyd, Aug 27 2018

Formula

Euler transform of b(1) = 1, b(n > 1) = A134959(n).

Extensions

Terms a(7) and beyond from Andrew Howroyd, Aug 27 2018

A304919 Number of labeled hyperforests spanning {1,...,n} and allowing singleton edges.

Original entry on oeis.org

1, 1, 5, 45, 665, 14153, 399421, 14137301, 603647601, 30231588689, 1738713049013, 112976375651901, 8186616300733321, 654642360222892057, 57267075701210437229, 5440407421313402397541, 557802495215406348358113, 61393838258161429159571873, 7220049654850517272144419941, 903546142463635579042416518989
Offset: 0

Views

Author

Gus Wiseman, May 21 2018

Keywords

Examples

			The a(2) = 5 hyperforests are the following:
{{1,2}}
{{1},{2}}
{{1},{1,2}}
{{2},{1,2}}
{{1},{2},{1,2}}
		

Crossrefs

Formula

Inverse binomial transform of A134956.
Previous Showing 11-12 of 12 results.