cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A138825 Divisors of 16775168 (the 5th perfect number divided by 2), written in base 2.

Original entry on oeis.org

1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000, 10000000000, 100000000000, 1111111111111, 11111111111110, 111111111111100, 1111111111111000, 11111111111110000, 111111111111100000
Offset: 1

Views

Author

Omar E. Pol, Mar 31 2008

Keywords

Comments

a(n) has n digits. See A138815 for more information.

Examples

			The structure of divisors of 16775168 (see A138815)
.....................................................................
n ............... Divisor . Formula ....... Divisor written in base 2
.....................................................................
1) .................... 1 = 2^0 ........... 1
2) .................... 2 = 2^1 ........... 10
3) .................... 4 = 2^2 ........... 100
4) .................... 8 = 2^3 ........... 1000
5) ................... 16 = 2^4 ........... 10000
6) ................... 32 = 2^5 ........... 100000
7) ................... 64 = 2^6 ........... 1000000
8) .................. 128 = 2^7 ........... 10000000
9) .................. 256 = 2^8 ........... 100000000
10) ................. 512 = 2^9 ........... 1000000000
11) ................ 1024 = 2^10 .......... 10000000000
12) A134708(5) = ... 2048 = 2^11 .......... 100000000000
13) A000668(5) = ... 8191 = 2^13 - 2^0 .... 1111111111111
14) ............... 16382 = 2^14 - 2^1 .... 11111111111110
15) ............... 32764 = 2^15 - 2^2 .... 111111111111100
16) ............... 65528 = 2^16 - 2^3 .... 1111111111111000
17) .............. 131056 = 2^17 - 2^4 .... 11111111111110000
18) .............. 262112 = 2^18 - 2^5 .... 111111111111100000
19) .............. 524224 = 2^19 - 2^6 .... 1111111111111000000
20) ............. 1048448 = 2^20 - 2^7 .... 11111111111110000000
21) ............. 2096896 = 2^21 - 2^8 .... 111111111111100000000
22) ............. 4193792 = 2^22 - 2^9 .... 1111111111111000000000
23) ............. 8387584 = 2^23 - 2^10 ... 11111111111110000000000
24) A133028(5) = 16775168 = 2^24 - 2^11 ... 111111111111100000000000
		

Crossrefs

Perfect number divided by 2: A133028. Cf. A000043, A000396, A000668, A090748, A134708, A135654, A138815.

Programs

  • Mathematica
    FromDigits[IntegerDigits[#,2]]&/@Divisors[16775168] (* Harvey P. Dale, May 26 2015 *)

A139246 Triangle read by rows: row n lists the proper divisors of n-th perfect number A000396(n).

Original entry on oeis.org

1, 2, 3, 1, 2, 4, 7, 14, 1, 2, 4, 8, 16, 31, 62, 124, 248, 1, 2, 4, 8, 16, 32, 64, 127, 254, 508, 1016, 2032, 4064, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8191, 16382, 32764, 65528, 131056, 262112, 524224, 1048448, 2096896, 4193792, 8387584, 16775168, 1
Offset: 1

Views

Author

Omar E. Pol, Apr 22 2008, corrected Apr 25 2008

Keywords

Comments

Rows n has A133033(n) terms.
The n-th row sum is the n-th perfect number A000396(n).

Examples

			Triangle begins:
  1, 2, 3
  1, 2, 4, 7, 14
  1, 2, 4, 8, 16, 31, 62, 124, 248
  1, 2, 4, 8, 16, 32, 64, 127, 254, 508, 1016, 2032, 4064
  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Most[Divisors[PerfectNumber[n]]],{n,6}]//Flatten (* Harvey P. Dale, Jul 08 2024 *)

A139248 Triangle read by rows: row n lists the proper divisors of n-th even superperfect number A061652(n).

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 8, 1, 2, 4, 8, 16, 32, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 1, 2, 4, 8, 16
Offset: 1

Views

Author

Omar E. Pol, Apr 22 2008

Keywords

Comments

Also, row n list the proper divisors of n-th superperfect number A019279(n), if there are no odd superperfect numbers.
Row n has A000043(n) - 1 = A090748(n) terms.

Examples

			Triangle begins:
  1
  1, 2
  1, 2, 4, 8
  1, 2, 4, 8, 16, 32
  1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048
  1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768
  ...
		

Crossrefs

Previous Showing 11-13 of 13 results.