cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A138937 Indices k such that A019325(k)=Phi[k](7) is prime, where Phi is a cyclotomic polynomial.

Original entry on oeis.org

5, 6, 13, 18, 21, 28, 30, 34, 36, 46, 48, 50, 54, 55, 58, 63, 76, 84, 94, 105, 122, 131, 148, 149, 224, 280, 288, 296, 332, 352, 456, 528, 531, 581, 650, 654, 730, 740, 759, 1026, 1047, 1065, 1460, 1660, 1699, 1959, 2067, 2260, 2380, 2665, 2890, 3238, 4020
Offset: 1

Views

Author

M. F. Hasler, Apr 03 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[Cyclotomic[#, 7]] &]
  • PARI
    for( i=1,999, ispseudoprime( polcyclo(i,7)) && print1( i",")) /* use ...subst(polcyclo(i),x,7)... in PARI < 2.4.2 */

Extensions

a(40)-a(53) from Robert Price, Apr 18 2012

A138939 Indices k such that A019327(k)=Phi[k](9) is prime, where Phi is a cyclotomic polynomial.

Original entry on oeis.org

6, 12, 18, 20, 30, 36, 54, 66, 118, 138, 152, 182, 232, 264, 336, 340, 380, 414, 446, 492, 540, 624, 720, 762, 1066, 1094, 1098, 1170, 1230, 1254, 1320, 1428, 1546, 2018, 2574, 2724, 2804, 2920, 3074, 3316, 3646, 4124, 4132, 4186, 4620, 4802
Offset: 1

Views

Author

M. F. Hasler, Apr 03 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[Cyclotomic[#, 9]] &]
  • PARI
    for( i=1,999, ispseudoprime( polcyclo(i,9)) && print1( i",")) /* use ...subst( polcyclo(i),x,9)... in PARI < 2.4.2 */

Extensions

a(25)-a(46) from Robert Price, Apr 28 2012

A253240 Square array read by antidiagonals: T(m, n) = Phi_m(n), the m-th cyclotomic polynomial at x=n.

Original entry on oeis.org

1, 1, -1, 1, 0, 1, 1, 1, 2, 1, 1, 2, 3, 3, 1, 1, 3, 4, 7, 2, 1, 1, 4, 5, 13, 5, 5, 1, 1, 5, 6, 21, 10, 31, 1, 1, 1, 6, 7, 31, 17, 121, 3, 7, 1, 1, 7, 8, 43, 26, 341, 7, 127, 2, 1, 1, 8, 9, 57, 37, 781, 13, 1093, 17, 3, 1, 1, 9, 10, 73, 50, 1555, 21, 5461, 82, 73, 1, 1, 1, 10, 11, 91, 65, 2801, 31, 19531, 257, 757, 11, 11, 1, 1, 11, 12, 111, 82, 4681, 43, 55987, 626, 4161, 61, 2047, 1, 1
Offset: 0

Views

Author

Eric Chen, Apr 22 2015

Keywords

Comments

Outside of rows 0, 1, 2 and columns 0, 1, only terms of A206942 occur.
Conjecture: There are infinitely many primes in every row (except row 0) and every column (except column 0), the indices of the first prime in n-th row and n-th column are listed in A117544 and A117545. (See A206864 for all the primes apart from row 0, 1, 2 and column 0, 1.)
Another conjecture: Except row 0, 1, 2 and column 0, 1, the only perfect powers in this table are 121 (=Phi_5(3)) and 343 (=Phi_3(18)=Phi_6(19)).

Examples

			Read by antidiagonals:
m\n  0   1   2   3   4   5   6   7   8   9  10  11  12
------------------------------------------------------
0    1   1   1   1   1   1   1   1   1   1   1   1   1
1   -1   0   1   2   3   4   5   6   7   8   9  10  11
2    1   2   3   4   5   6   7   8   9  10  11  12  13
3    1   3   7  13  21  31  43  57  73  91 111 133 157
4    1   2   5  10  17  26  37  50  65  82 101 122 145
5    1   5  31 121 341 781 ... ... ... ... ... ... ...
6    1   1   3   7  13  21  31  43  57  73  91 111 133
etc.
The cyclotomic polynomials are:
n        n-th cyclotomic polynomial
0        1
1        x-1
2        x+1
3        x^2+x+1
4        x^2+1
5        x^4+x^3+x^2+x+1
6        x^2-x+1
...
		

Crossrefs

Main diagonal is A070518.
Indices of primes in n-th column for n = 1-10 are A246655, A072226, A138933, A138934, A138935, A138936, A138937, A138938, A138939, A138940.
Indices of primes in main diagonal is A070519.
Cf. A117544 (indices of first prime in n-th row), A085398 (indices of first prime in n-th row apart from column 1), A117545 (indices of first prime in n-th column).
Cf. A206942 (all terms (sorted) for rows>2 and columns>1).
Cf. A206864 (all primes (sorted) for rows>2 and columns>1).

Programs

  • Mathematica
    Table[Cyclotomic[m, k-m], {k, 0, 49}, {m, 0, k}]
  • PARI
    t1(n)=n-binomial(floor(1/2+sqrt(2+2*n)), 2)
    t2(n)=binomial(floor(3/2+sqrt(2+2*n)), 2)-(n+1)
    T(m, n) = if(m==0, 1, polcyclo(m, n))
    a(n) = T(t1(n), t2(n))

Formula

T(m, n) = Phi_m(n)

A138921 Indices k such that A020508(k)=Phi[k](-9) is prime, where Phi is a cyclotomic polynomial.

Original entry on oeis.org

3, 9, 12, 15, 20, 27, 33, 36, 59, 69, 91, 152, 207, 223, 232, 264, 336, 340, 380, 381, 492, 533, 540, 547, 549, 585, 615, 624, 627, 720, 773, 1009, 1287, 1320, 1428, 1537, 1823, 2093, 2401, 2724, 2733, 2804, 2920, 3316, 3803, 4124, 4132, 4620, 7143, 7520, 7708
Offset: 1

Views

Author

M. F. Hasler, Apr 03 2008

Keywords

Comments

Most terms of this sequence are multiples of 3, exceptions are 20, 59, 91, 152, 223, 232, 340, 380, 533, 547, 773... corresponding to a(n) with n=5, 9, 11, 12, 14, 15, 18, 19, 22, 24, 31...

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[Cyclotomic[#, -9]] &]
  • PARI
    for( i=1,999, ispseudoprime( polcyclo(i,-9)) && print1( i",")) /* use ...subst(polcyclo(i),x,-9)... in PARI < 2.4.2 */

Extensions

a(32)-a(51) by Robert Price, Mar 22 2012

A138923 Indices k such that A020506(k)=Phi[k](-7) is prime, where Phi is a cyclotomic polynomial.

Original entry on oeis.org

3, 9, 10, 15, 17, 23, 25, 26, 27, 28, 29, 36, 42, 47, 48, 61, 76, 84, 110, 126, 148, 210, 224, 262, 280, 288, 296, 298, 325, 327, 332, 352, 365, 456, 513, 528, 740, 1062, 1162, 1445, 1460, 1518, 1619, 1660, 2094, 2130, 2260, 2380, 3398, 3447, 3918
Offset: 1

Views

Author

M. F. Hasler, Apr 03 2008

Keywords

Comments

There are only 6 terms between 365 and 1445 (exclusive).

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 2400], PrimeQ[ Cyclotomic[#, -7]] &] (* Robert G. Wilson v, Mar 25 2012 *)
  • PARI
    for( i=1,999, ispseudoprime( polcyclo(i,-7)) && print1( i",")) /* use ...subst(polcyclo(i),x,-7)... in PARI < 2.4.2 */

A138924 Indices k such that A020505(k)=Phi[k](-6) is prime, where Phi is a cyclotomic polynomial.

Original entry on oeis.org

3, 4, 6, 8, 9, 11, 14, 15, 21, 24, 25, 31, 42, 43, 45, 47, 58, 59, 77, 107, 124, 142, 144, 177, 192, 254, 279, 360, 407, 437, 480, 525, 542, 551, 579, 764, 811, 822, 891, 917, 1018, 1028, 1150, 1326, 1376, 1464, 1468, 1650, 1719, 1924, 2096, 2098, 2176, 2226
Offset: 1

Views

Author

M. F. Hasler, Apr 03 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 2000], PrimeQ[ Cyclotomic[#, -6]] &] (* Robert G. Wilson v, Mar 25 2012 *)
  • PARI
    for( i=1,999, ispseudoprime( polcyclo(i,-6)) && print1( i",")) /* use ...subst(polcyclo(i),x,-6)... in PARI < 2.4.2 */

Extensions

a(51)-a(54) from Robert Price, Apr 02 2012

A138925 Indices k such that A020504(k)=Phi[k](-5) is prime, where Phi is a cyclotomic polynomial.

Original entry on oeis.org

5, 6, 12, 14, 22, 24, 26, 28, 45, 48, 55, 56, 67, 88, 92, 94, 98, 99, 101, 103, 108, 114, 116, 120, 229, 236, 248, 254, 265, 282, 288, 298, 322, 347, 362, 384, 399, 420, 500, 536, 567, 615, 620, 714, 835, 992, 1047, 1064, 1238, 1794, 1858, 1962, 2313, 2397
Offset: 1

Views

Author

M. F. Hasler, Apr 03 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 2000], PrimeQ[ Cyclotomic[#, -5]] &] (* Robert G. Wilson v, Mar 25 2012 *)
  • PARI
    for( i=1,999, ispseudoprime( polcyclo(i,-5)) && print1( i",")) /* use ...subst(polcyclo(i),x,-5)... in PARI < 2.4.2 */

Extensions

a(53)-a(54) from Robert Price, Apr 05 2012

A138926 Indices k such that A020503(k)=Phi[k](-4) is prime, where Phi is a cyclotomic polynomial.

Original entry on oeis.org

3, 4, 8, 12, 16, 20, 28, 40, 60, 92, 96, 104, 140, 148, 156, 300, 356, 408, 596, 612, 692, 732, 756, 800, 952, 996, 1004, 1228, 1268, 2240, 2532, 3060, 3796, 3824, 3944, 5096, 5540, 7476, 7700, 8544, 9800, 14628, 15828, 16908, 18480, 20260, 21924, 24656, 38456
Offset: 1

Views

Author

M. F. Hasler, Apr 03 2008

Keywords

Comments

It appears that for all k>1, a(k) is a multiple of 4.
It also appears that all Cyclotomic Polynomials, Phi[k](x), where k is a multiple of 4 have no odd powers of x. For example, Phi[20](x)=x^8-x^6+x^4-x^2+1. This implies that Phi[k](x)=Phi[k](-x), where k is a multiple of 4. - Robert Price, Apr 14 2012

Crossrefs

Programs

  • Mathematica
    Select[ Range[3, 5000], PrimeQ[ Cyclotomic[#, -4]] &] (* Robert G. Wilson v, Mar 25 2012 *)
  • PARI
    for( i=1,999, ispseudoprime( polcyclo(i,-4)) && print1( i",")) /* use ...subst(polcyclo(i),x,-4)... in PARI < 2.4.2 */

Extensions

a(36)-a(49) from Robert Price, Apr 07 2012

A138927 Indices k such that A020502(k)=Phi[k](-3) is prime, where Phi is a cyclotomic polynomial.

Original entry on oeis.org

3, 5, 6, 7, 12, 13, 14, 18, 23, 24, 26, 30, 35, 36, 40, 42, 43, 60, 65, 66, 72, 77, 108, 126, 132, 142, 206, 215, 236, 276, 281, 286, 290, 304, 322, 359, 364, 391, 464, 487, 510, 522, 528, 529, 535, 558, 574, 577, 672, 680, 713, 731, 760, 799, 828, 892, 984
Offset: 1

Views

Author

M. F. Hasler, Apr 03 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Select[ Range[3, 1000], PrimeQ[ Cyclotomic[#, -3]] &] (* Robert G. Wilson v, Mar 25 2012 *)
  • PARI
    for( i=1,999, ispseudoprime( polcyclo(i,-3)) && print1( i","))

A138928 Indices n such that A020501(n) = phi(n)(-2) is prime, where Phi is a cyclotomic polynomial.

Original entry on oeis.org

3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 24, 26, 30, 31, 32, 34, 38, 39, 40, 43, 45, 49, 54, 56, 61, 62, 63, 66, 75, 79, 80, 85, 87, 98, 101, 117, 120, 122, 127, 130, 138, 154, 161, 167, 170, 178, 183, 184, 186, 187, 191, 192, 199, 205, 207, 208
Offset: 1

Views

Author

M. F. Hasler, Apr 03 2008

Keywords

Comments

While the sequence is not very interesting up to a(n)<300, there are only 4 values in the interval [400,599].

Crossrefs

Programs

  • Mathematica
    Select[ Range[3, 1000], PrimeQ[ Cyclotomic[#, -2]] &] (* Robert G. Wilson v, Mar 25 2012 *)
  • PARI
    for( i=1,999, isprime( polcyclo(i,-2)) && print1( i",")) /* for PARI < 2.4.2 use ...subst(polcyclo(i),x,-2)...*/
Previous Showing 11-20 of 24 results. Next