cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A139305 a(n) = (2^(2p - 1)/32)-1, where p is the n-th Mersenne prime A000668(n).

Original entry on oeis.org

0, 255, 72057594037927935, 452312848583266388373324160190187140051835877600158453279131187530910662655
Offset: 1

Views

Author

Omar E. Pol, Apr 13 2008

Keywords

Comments

Next term is too large to list here.

Crossrefs

Programs

  • Mathematica
    a[n_] := 2^(2^(MersennePrimeExponent[n] + 1) - 8) - 1; Array[a, 4] (* Amiram Eldar, Jul 10 2025 *)

Formula

a(n) = (2^(2*A000668(n)-1)/32)-1 = (A139294(n)/32)-1.

Extensions

Edited by Max Alekseyev, Apr 23 2010

A139307 a(n) = (2^(2*p - 1)) - 1, where p is A000043(n).

Original entry on oeis.org

7, 31, 511, 8191, 33554431, 8589934591, 137438953471, 2305843009213693951, 2658455991569831745807614120560689151, 191561942608236107294793378393788647952342390272950271
Offset: 1

Views

Author

Omar E. Pol, Apr 13 2008, May 08 2008

Keywords

Comments

Ultraperfect numbers (A139306) minus 1.

Examples

			a(5) = 33554431 because A000043(5) = 13 and (2^(2*13 - 1))-1 = 2^25 - 1 = 33554431.
		

Crossrefs

Programs

  • Mathematica
    2^(2 * MersennePrimeExponent[Range[10]] - 1) - 1 (* Amiram Eldar, Oct 17 2024 *)

Formula

a(n) = (2^(2*A000043(n) - 1)) - 1 = A139306(n) - 1.
Previous Showing 11-12 of 12 results.