cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-33 of 33 results.

A152923 a(n) = 2^(2*p-1)/8, where p is A000043(n).

Original entry on oeis.org

1, 4, 64, 1024, 4194304, 1073741824, 17179869184, 288230376151711744, 332306998946228968225951765070086144, 23945242826029513411849172299223580994042798784118784, 1645504557321206042154969182557350504982735865633579863348609024
Offset: 1

Views

Author

Omar E. Pol, Dec 15 2008

Keywords

Comments

Ultraperfect numbers (A139306), divided by 8.

Crossrefs

Programs

  • Mathematica
    2^(2 * MersennePrimeExponent[Range[10]] - 4) (* Amiram Eldar, Oct 17 2024 *)

Formula

a(n) = A139306(n)/8 = A152921(n)/4 = A152922(n)/2.

Extensions

a(9)-a(11) from Amiram Eldar, Oct 17 2024

A330836 Numbers of the form 2^(2*p-1)*3*M_p^2, where p > 2 is a Mersenne exponent, A000043, and M_p is the corresponding Mersenne prime, A000668.

Original entry on oeis.org

4704, 1476096, 396386304, 6753750274277376, 442715102395357986816, 113336363243719574421504, 31901471869127420013759771876790370304, 42404329554681223873219247037048711787234652848116929825491652260298489856
Offset: 1

Views

Author

Walter Kehowski, Jan 12 2020

Keywords

Comments

Also numbers with power-spectral basis {M_p^2*(M_p+2)^2, M_p^2*(M_p+1)^2, (M_p^2-1)^2}. The first element of the spectral basis of a(n) is A330819(n+1), the second element is A330837(n+1), and the third element is A330820(n+1). Generally, a power-spectral basis is a spectral basis that consists of primes and powers.
The spectral sum of a(n), that is, the sum of the elements of its spectral basis, is 2*a(n)+1. In this case, we say that a(n) has index 2.
a(n) is also isospectral with A330838(n), that is, a(n) and A330838(n) have the same spectral basis, but A330838(n) has index 1. Thus, A330838(n) and a(n) form an isospectral pair.
Subsequence of Zumkeller numbers (A083207), since a(n) = 2^r * 3 * s, where s is relatively prime to 6. - Ivan N. Ianakiev, Feb 03 2020

Examples

			If p = 3, then a(1) = 2^(2*3-1)*3*7^2 = 4704, and the spectral basis of 4704 is {63^2, 56^2, 48^2}, consisting of powers. The spectral sum of a(1), that is, the sum of the elements of its spectral basis, is 2*4704+1 = 9409. In this case, we say that a(1) has index 2. The number A330838(1) = 9704 has the same spectral basis as a(1), but with index 1. We say that A330838(1) and a(1) are isospectral and form an isospectral pair.
		

Crossrefs

Programs

  • Maple
    a := proc(n::posint)
      local p, m;
      p:=NumberTheory[IthMersenne](n+1);
      m:=2^p-1;
      return 2^(2*p-1)*3*m^2;
    end:
  • Mathematica
    f[p_] := 2^(2*p - 1)*3*(2^p - 1)^2; f /@ MersennePrimeExponent /@ Range[2, 9] (* Amiram Eldar, Jan 12 2020 *)

Formula

a(n) = A139306(n+1) * 3 * A133049(n+1).

A330837 a(n) = M(n)^2*(M(n)+1)^2, where M(n) = A000668(n) is the n-th Mersenne prime.

Original entry on oeis.org

144, 3136, 984064, 264257536, 4502500182851584, 295143401596905324544, 75557575495813049614336, 21267647912751613342506514584526913536, 28269553036454149248812831358032474524823101898744619883661101506865659904
Offset: 1

Views

Author

Walter Kehowski, Jan 12 2020

Keywords

Comments

a(n+1) is the second element of the power-spectral basis of both A330836(n) and A330838(n). Also, a(n) = A139256(n)^2, where A139256(n) is the sum of the divisors of the n-th perfect number, A000396(n).
Also: squares of twice the perfect numbers. - M. F. Hasler, Feb 07 2020

Examples

			If p=3, then a(2) = (7*2^3)^2 = 56^2, and the spectral basis of A330836(1) = 4704 and A330838(1) = 9408 is {63^2, 56^2, 48^2}, consisting of powers.
		

Crossrefs

Programs

  • Maple
    a := proc(n::posint)
      local p, m;
      p:=NumberTheory[IthMersenne](n);
      m:=2^p-1;
      return m^2*(m+1)^2;
    end:
  • Mathematica
    f[p_] := 2^(2p)*(2^p - 1)^2; f /@ MersennePrimeExponent /@ Range[2, 9] (* Amiram Eldar, Jan 12 2020 *)
  • PARI
    forprime(p=1,999,isprime(2^p-1)&&print1((2^p-1)^2<<(2*p)",")) \\ M. F. Hasler, Feb 07 2020

Formula

a(n) = A330824(n) * A133049(n).
a(n) = (2*A000396(n))^2 = (2^p-1)^2*4^p with p = A000043(n). - M. F. Hasler, Feb 07 2020
Previous Showing 31-33 of 33 results.