A255936 Number of n X n binary matrices having a contiguous 2 by 2 submatrix whose every element is 1.
0, 0, 1, 95, 23360, 17853159, 47300505935, 455725535985152, 16477833186525760257, 2285218507961233452756479, 1234874616385516438189472371200, 2628743329824106687023439956782224783, 22201933512060923158839975337648286975677119
Offset: 0
Keywords
Links
- S. R. Cowell, A formula for the reliability of a d-dimensional consecutive-k-out-of-n:F system, International Journal of Combinatorics, Vol. 2015, Article ID 140909, 5 pages
- Index entries for sequences related to binary matrices
Programs
-
Mathematica
failurenumber[m_, n_, r_, s_] := Module[{numberofnodes, numberofcases, cases, badsubmatrix, failurecases, i, j}, numberofnodes = m n; numberofcases = 2^numberofnodes; cases = Tuples[{0, 1}, {m, n}]; badsubmatrix = Table[1, {r}, {s}]; failurecases = Parallelize[ Select[cases, Apply[Or, Flatten[Table[#[[i ;; i + r - 1, j ;; j + s - 1]] == badsubmatrix, {i, 1, m - r + 1}, {j, 1, n - s + 1}]]] &]]; Length[failurecases] ] failurenumberslist = Map[failurenumber[#1, #1, 2, 2] &, Range[2, 5]]
Formula
a(n) = -2^(n^2) Sum_{J a nonempty subset of E} (-1)^|J| Prod_{J' a nonempty subset of J} exp[(-1)^|J'| log(2) max(0, 2-(max_{e in J'} e_1 - min_{e in J'} e_1)) max(0, 2-(max_{e in J'} e_2 - min_{e in J'} e_2))], for n >= 2, where E={1,..,n-1} x {1,..,n-1}. (special case of Corollary 2 in the Cowell reference) - Simon Cowell, Sep 07 2015
Extensions
a(6)-a(12) from Alois P. Heinz, Mar 11 2015
Comments