cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A321489 Numbers m such that both m and m+1 have at least 7 distinct prime factors.

Original entry on oeis.org

965009045, 1068044054, 1168008204, 1177173074, 1209907985, 1218115535, 1240268490, 1338753129, 1344185205, 1408520805, 1477640450, 1487720234, 1509981395, 1663654629, 1693460405, 1731986894, 1758259425, 1819458354, 1821278459, 1826445984, 1857332840
Offset: 1

Views

Author

Amiram Eldar and M. F. Hasler, Nov 12 2018

Keywords

Comments

The first 300 terms of this sequence are such that m and m+1 both have exactly 7 prime divisors. See A321497 for the terms m such that m or m+1 has more than 7 prime factors: the smallest such term is 5163068910.
Numbers m and m+1 can never have a common prime factor (consider them mod p), therefore the terms are > sqrt(p(7+7)#) = A003059(A002110(7+7)). (Here we see that sqrt(p(7+8)#) is a more realistic estimate of a(1), but for smaller values of k we may have sqrt(p(2k+1)#) > m(k) > sqrt(p(2k)#), where m(k) is the smallest of two consecutive integers each having at least k prime divisors. For example, A321503(1) < sqrt(p(3+4)#) ~ A321493(1).)
From M. F. Hasler, Nov 28 2018: (Start)
The first 100 terms and beyond are all congruent to one of {14, 20, 35, 49, 50, 69, 84, 90, 104, 105, 110, 119, 125, 129, 134, 140, 144, 170, 174, 189, 195} mod 210. Here, 35, 195, 189, 14 140, 20 and 174 (in order of decreasing frequency) occur between 6 and 13 times, and {49, 50, 110, 129, 134, 144, 170} occur only once.
However, as observed by Charles R Greathouse IV, one can construct a term of this sequence congruent to any given m > 0, modulo any given n > 0.
The first terms of this sequence which are multiples of 210 are in A321497. An example of a term that is a multiple of 210 but not in A321497 is 29759526510, due to Charles R Greathouse IV. Such examples can be constructed by solving A*210 + 1 = B for A having 3 distinct prime factors not among {2, 3, 5, 7}, B having 7 distinct prime factors and gcd(B, 210*A) = 1. (End)

Examples

			a(1) = 5 * 7 * 11 * 13 * 23 * 83 * 101, a(1)+1 = 2 * 3 * 17 * 29 * 41 * 73 * 109.
		

Crossrefs

Cf. A255346, A321503 .. A321506 (analog for k = 2, ..., 6 prime divisors).
Cf. A321502, A321493 .. A321497 (m and m+1 have at least but not both exactly k = 2, ..., 7 prime divisors).
Cf. A074851, A140077, A140078, A140079 (m and m+1 both have exactly k = 2, 3, 4, 5 prime divisors).
Cf. A002110.

Programs

  • Mathematica
    Select[Range[36000000], PrimeNu[#] > 6 && PrimeNu[# + 1] > 6 &]
  • PARI
    is(n)=omega(n)>6&&omega(n+1)>6
    A321489=List();for(n=965*10^6,1.8e9,is(n)&&listput(A321489,n))

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 29 2018

A321502 Numbers m such that m and m+1 have at least 2, but m or m+1 has at least 3 prime divisors.

Original entry on oeis.org

65, 69, 77, 84, 90, 104, 105, 110, 114, 119, 129, 132, 140, 153, 154, 155, 164, 165, 170, 174, 182, 185, 186, 189, 194, 195, 203, 204, 209, 219, 220, 221, 230, 231, 234, 237, 245, 246, 252, 254, 258, 259, 260, 264, 265, 266, 272, 273, 275, 279, 284, 285, 286, 290, 294, 299, 300, 305
Offset: 1

Views

Author

M. F. Hasler, Nov 27 2018

Keywords

Comments

Since m and m+1 cannot have a common factor, m(m+1) has at least 2+3 prime divisors (= distinct prime factors), whence m+1 > sqrt(primorial(5)) ~ 48. It turns out that a(1)*(a(1)+1) = 2*3*5*11*13, i.e., the prime factor 7 is not present.

Crossrefs

Cf. A321493, A321494, A321495, A321496, A321497 (analog for k = 3, ..., 7 prime divisors).
Cf. A074851, A140077, A140078, A140079 (m and m+1 have exactly k = 2, 3, 4, 5 prime divisors).
Cf. A255346, A321503 .. A321506, A321489 (m and m+1 have at least 2, ..., 7 prime divisors).

Programs

  • PARI
    select( is_A321502(n)=vecmax(n=[omega(n), omega(n+1)])>2&&vecmin(n)>1, [1..500])

Formula

Equals A255346 \ A074851.
Previous Showing 11-12 of 12 results.