cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A302253 Positions of 3 in A190436.

Original entry on oeis.org

8, 21, 29, 42, 55, 63, 76, 97, 110, 118, 131, 144, 152, 165, 186, 199, 207, 220, 241, 254, 262, 275, 288, 296, 309, 330, 343, 351, 364, 377, 385, 398, 406, 419, 432, 440, 453, 474, 487, 495, 508, 521, 529, 542, 563, 576, 584, 597, 618, 631, 639, 652, 665, 673, 686, 707, 720, 728
Offset: 1

Views

Author

G. C. Greubel, Apr 04 2018

Keywords

Comments

Write a(n) = [(bn+c)r] - b[nr] - [cr]. If r>0 and b and c are integers satisfying b >= 2 and 0 <= c <= b-1, then 0 <= a(n) <= b. The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b. These b+1 position sequences comprise a partition of the positive integers.
Examples:
(golden ratio,2,0): A078588, A005653, A005652
(golden ratio,2,1): A190427-A190430
(golden ratio,3,0): A140397-A190400
(golden ratio,3,1): A140431-A190435
(golden ratio,3,2): A140436-A190439
(golden ratio,4,c): A140440-A190461

Crossrefs

Programs

  • Mathematica
    r = GoldenRatio; b = 3; c = 2;
    f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r];
    t = Table[f[n], {n, 1, 500}] (* A190436 *)
    Flatten[Position[t, 0]] (* A190437 *)
    Flatten[Position[t, 1]] (* A190438 *)
    Flatten[Position[t, 2]] (* A190439 *)
    Flatten[Position[t, 3]] (* A302253 *)

A190451 [(bn+c)r]-b[nr]-[cr], where (r,b,c)=(golden ratio,4,2) and []=floor.

Original entry on oeis.org

2, 1, 3, 2, 0, 3, 1, 4, 2, 0, 3, 1, 0, 2, 1, 3, 2, 0, 3, 1, 4, 2, 1, 3, 2, 0, 2, 1, 3, 2, 0, 3, 1, 0, 2, 1, 3, 2, 0, 3, 1, 4, 2, 1, 3, 1, 0, 2, 1, 3, 2, 0, 3, 1, 4, 2, 1, 3, 2, 0, 3, 1, 3, 2, 0, 3, 1, 0, 2, 1, 3, 2, 0, 3, 1, 4, 2, 1, 3, 2, 0, 2, 1, 3, 2, 0, 3, 1, 0, 2, 1, 3, 2, 0, 3, 1, 4, 2, 0, 3, 1, 0, 2, 1, 3, 2, 0, 3, 1, 4, 2, 1, 3, 2, 0, 3, 1, 3, 2, 0, 3, 1, 0
Offset: 1

Views

Author

Clark Kimberling, May 10 2011

Keywords

Comments

Write a(n)=[(bn+c)r]-b[nr]-[cr]. If r>0 and b and c are integers satisfying b>=2 and 0<=c<=b-1, then 0<=a(n)<=b. The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b. These b+1 position sequences comprise a partition of the positive integers.
Examples:
(golden ratio,2,0): A078588, A005653, A005652
(golden ratio,2,1): A190427-A190430
(golden ratio,3,0): A140397-A190400
(golden ratio,3,1): A140431-A190435
(golden ratio,3,2): A140436-A190439

Crossrefs

Programs

  • Mathematica
    r = GoldenRatio; b = 4; c = 2;
    f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r];
    t = Table[f[n], {n, 1, 320}]
    Flatten[Position[t, 0]]
    Flatten[Position[t, 1]]
    Flatten[Position[t, 2]]
    Flatten[Position[t, 3]]
    Flatten[Position[t, 4]]

A140401 Let S be the set of numbers formed from the sum of three distinct elements of A140398, or the sum of three distinct elements of A140399, or the sum of three distinct elements of A140400; sequence gives complement of S.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, 21, 23, 26, 29, 31, 34, 39, 42, 47, 55, 60, 68, 76, 81, 89, 102, 110, 123, 144, 157, 178, 199, 212, 233, 267, 288, 322, 377, 411, 466, 521, 555, 610, 699, 754, 843, 987
Offset: 1

Views

Author

Fred Lunnon, Jun 20 2008

Keywords

Crossrefs

Formula

It appears that this consists of the following numbers: { F_{k}, F_{k} + F_{k-3}, F_{k} + F_{k-2}, F_{2k} + F_{2k-5}, F_{2k+1} - F_{2k-4}, F_{2k+1} + F_{2k-3} }, where F (A000045) are the Fibonacci numbers and k and other subscripts are restricted to positive values.
Previous Showing 11-13 of 13 results.