cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A295762 G.f. A(x) satisfies: A(x - 2*A(x^2)) = x + A(x^2).

Original entry on oeis.org

1, 3, 12, 69, 444, 3060, 22104, 165195, 1266636, 9908196, 78760920, 634379124, 5166150000, 42465716328, 351876854448, 2936058188877, 24648274487556, 208040487845076, 1764376309044792, 15027939263874132, 128495423551583664, 1102547377746843624, 9490542912076091184, 81931260285359287812, 709199467337528862768, 6153967855892699398368, 53521531522907694320928, 466461452477641527148344
Offset: 1

Views

Author

Paul D. Hanna, Dec 03 2017

Keywords

Comments

Odd terms seem to occur only at a(2^n) for n>=0 (conjecture).

Examples

			G.f.: A(x) = x + 3*x^2 + 12*x^3 + 69*x^4 + 444*x^5 + 3060*x^6 + 22104*x^7 + 165195*x^8 + 1266636*x^9 + 9908196*x^10 + 78760920*x^11 + 634379124*x^12 +...
such that  A(x - 2*A(x^2))  =  x + A(x^2).
RELATED SERIES.
A(x - 2*A(x^2)) = x + x^2 + 3*x^4 + 12*x^6 + 69*x^8 + 444*x^10 + 3060*x^12 + 22104*x^14 + 165195*x^16 + 1266636*x^18 + 9908196*x^20 +...
which equals x + A(x^2).
Series_Reversion( x - 2*A(x^2) ) = x + 2*x^2 + 8*x^3 + 46*x^4 + 296*x^5 + 2040*x^6 + 14736*x^7 + 110130*x^8 + 844424*x^9 + 6605464*x^10 + 52507280*x^11 + 422919416*x^12 +...
which equals (2*A(x) + x)/3.
A( (x + 2*A(x))^2/9 ) = x^2 + 4*x^3 + 23*x^4 + 148*x^5 + 1020*x^6 + 7368*x^7 + 55065*x^8 + 422212*x^9 + 3302732*x^10 + 26253640*x^11 + 211459708*x^12 +...
which equals (A(x) - x)/3.
Odd terms seem to occur only at positions 2^n, n>=0, beginning:
[1, 3, 69, 165195, 2936058188877, 2740954751925406954539018771, 6899036855844990995854505818787102393537422152828959745477, ...].
		

Crossrefs

Programs

  • Mathematica
    nmax = 28; sol = {a[1] -> 1}; Do[A[x_] = Sum[a[k] x^k, {k, 1, n}] /. sol; eq = CoefficientList[A[x - 2 A[x^2]] - (x + A[x^2]) + O[x]^(n+1) // Normal, x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
    sol /. Rule -> Set;
    a /@ Range[nmax] (* Jean-François Alcover, Nov 03 2019 *)
  • PARI
    {a(n) = my(A=x); for(i=1,n, A = -x/2 + 3/2*serreverse(x - 2*subst(A,x,x^2) +x^2*O(x^n)) ); polcoeff(A,n)}
    for(n=1,30,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) A(x) = x + 3 * A( (x + 2*A(x))^2/9 ).
(2) A(x) = -x/2 + 3/2*Series_Reversion( x - 2*A(x^2) ).
(3) x = A( -2*x + 3 * Series_Reversion( x + A(x^2) ) ).
(4) A(x - 2*A(x^2)) = x + A(x^2).
a(n) ~ c * d^n / n^(3/2), where d = 9.2093789571628170578048631587867514135871993630966974111785256401203919511... and c = 0.0682994378249920600052979267397719638823914060552824374... - Vaclav Kotesovec, Dec 04 2017

A177408 G.f. satisfies: A(x) = x + A( 4*A(x)^4 )^(1/2).

Original entry on oeis.org

1, 2, 8, 40, 224, 1352, 8576, 56352, 380160, 2617584, 18320384, 129950912, 932114432, 6749344832, 49268899840, 362189529344, 2678989406208, 19923485019840, 148887398711296, 1117452514604800, 8419605676818432
Offset: 1

Views

Author

Paul D. Hanna, Jun 19 2010

Keywords

Examples

			G.f.: A(x) = x + 2*x^2 + 8*x^3 + 40*x^4 + 224*x^5 + 1352*x^6 +...
Related expansions:
. A(4A(x)^4) = 4*x^4 + 32*x^5 + 224*x^6 + 1536*x^7 + 10592*x^8 +...
. A(x)^4 = x^4 + 8*x^5 + 56*x^6 + 384*x^7 + 2640*x^8 + 18336*x^9 +...
. A(4x^4)^(1/2) = 2*x^2 + 8*x^6 + 112*x^10 + 2112*x^14 + 45760*x^18 +...
...
The series reversion is defined by R(x) = x - A(4x^4)^(1/2) where:
. R(x) = x - 2*x^2 - 8*x^6 - 112*x^10 - 2112*x^14 - 45760*x^18 -...
. x/R(x) = 1 + 2*x + 4*x^2 + 8*x^3 + 16*x^4 + 40*x^5 + 96*x^6 + 224*x^7 +...
		

Crossrefs

Cf. A141200.

Programs

  • PARI
    {a(n)=local(A=x+x^2);for(i=1,n,A=x+subst(A,x,4*(A+x*O(x^n))^4)^(1/2));polcoeff(A,n)}

Formula

Radius of convergence, r, and related values:
. r = 0.123195593008501117935531659506400229201428882504980293279833...
. A(r) = 0.239702251488238187695726754757078686233527461098463854580...
. A(-r) = -0.1022686661772839286606841162458831990656192887231153817...
. limit a(n)/a(n+1) = r.
Series reversion: let R(x) satisfy R(A(x)) = x, then
. R(x) = x - A(4x^4)^(1/2),
. x/R(x) = x*d/dx[x/R(x)] at x = A(r) where r = radius of convergence.

A378255 G.f. A(x) satisfies A(x) = x + A(A(x)^2) + A(A(x)^3).

Original entry on oeis.org

1, 1, 3, 11, 44, 193, 882, 4178, 20305, 100694, 507493, 2591897, 13384911, 69773480, 366661360, 1940336952, 10331179153, 55306072496, 297499878304, 1607212566176, 8716586959731, 47440220540922, 259021671704538, 1418386679682870, 7787843448380598, 42865830110488341, 236480195092162079
Offset: 1

Views

Author

Paul D. Hanna, Nov 23 2024

Keywords

Examples

			G.f.: A(x) = x + x^2 + 3*x^3 + 11*x^4 + 44*x^5 + 193*x^6 + 882*x^7 + 4178*x^8 + 20305*x^9 + 100694*x^10 + 507493*x^11 + 2591897*x^12 + ...
where A(x) = x + A(A(x)^2) + A(A(x)^3).
RELATED SERIES.
A(A(x)^2) = x^2 + 2*x^3 + 8*x^4 + 32*x^5 + 140*x^6 + 642*x^7 + 3044*x^8 + 14810*x^9 + 73508*x^10 + 370744*x^11 + 1894641*x^12 + ...
A(A(x)^3) = x^3 + 3*x^4 + 12*x^5 + 53*x^6 + 240*x^7 + 1134*x^8 + 5495*x^9 + 27186*x^10 + 136749*x^11 + 697256*x^12 + ...
A(x^2) + A(x^3) = x^2 + x^3 + x^4 + 4*x^6 + 11*x^8 + 3*x^9 + 44*x^10 + 204*x^12 + 882*x^14 + 44*x^15 + 4178*x^16 + 20498*x^18 + 100694*x^20 + 882*x^21 + 507493*x^22 + 2596075*x^24 + ...
where A(x - A(x^2) - A(x^3)) = x.
SPECIFIC VALUES.
A(t) = 2/7 at t = 0.17113633000646334369180481612349578624783801172280...
  where t = 2/7 - A(4/49) - A(8/343).
A(t) = 1/4 at t = 0.16675404370583413662402450218565513714831350182372...
  where t = 1/4 - A(1/16) - A(1/64).
A(t) = 1/5 at t = 0.15010878278748588281213370320635881316994691322045...
  where t = 1/5 - A(1/25) - A(1/125).
A(t) = 1/6 at t = 0.13339423917640795169936128266096825782919420931151...
  where t = 1/6 - A(1/36) - A(1/216).
A(t) = 1/7 at t = 0.11908088070152938397080640031639630333627904913531...
A(t) = 1/8 at t = 0.10716175341844903845196692277233592851173749413122...
A(t) = 1/9 at t = 0.09723347082793633309633745814458884367513391389109...
A(t) = 1/10 at t = 0.0888958823866966406913909794974554201549795441139...
A(1/16) = 0.0673646719229547504984252010615186334929817484538318...
A(1/25) = 0.0418256346622057039599677785843885345768765252605719...
A(1/36) = 0.0286210615541792671675075085528989453238496370093068...
A(1/64) = 0.0158812843712111128775502967528262293587047497224419...
A(1/125) = 0.0080655825503084132278985182092526522531765615189742...
A(1/216) = 0.0046513659360794477997978754527994635136228203458472...
		

Crossrefs

Cf. A141200.

Programs

  • PARI
    \\ Formula: A(x) = Series_Reversion(x - A(x^2) - A(x^3)) \\
    {a(n) = my(A=x+x^2); for(i=0, n, A = serreverse(x - subst(A, x, x^2 +x^2*O(x^n)) - subst(A, x, x^3 +x^2*O(x^n)))) ; polcoeff(A, n)}
    for(n=1, 30, print1(a(n), ", "))
    
  • PARI
    \\ Formula: A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) (A(x^2) + A(x^3))^n/n! \\
    {Dx(n, F) = my(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n) = my(A=x+x^2+x*O(x^n)); for(i=1, n, A = x + sum(m=1, n, Dx(m-1, (subst(A, x, x^2+x*O(x^n)) + subst(A, x, x^3+x*O(x^n)))^m)/m!)+x*O(x^n)); polcoeff(A, n)}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x) = x + A(A(x)^2) + A(A(x)^3).
(2) A(x) = Series_Reversion(x - A(x^2) - A(x^3)).
(3) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) (A(x^2) + A(x^3))^n / n!.
(4) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) (A(x^2) + A(x^3))^n/x / n! ).
Previous Showing 11-13 of 13 results.