cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A220486 a(n) = n(p(n)-d(n)): sum of all of parts of all partitions of n with at least one distinct part.

Original entry on oeis.org

0, 0, 3, 8, 25, 42, 91, 144, 243, 380, 594, 852, 1287, 1834, 2580, 3616, 5015, 6822, 9272, 12420, 16548, 21956, 28819, 37608, 48875, 63232, 81162, 103936, 132327, 167880, 212040, 266976, 334587, 418404, 520765, 646848, 800495, 988418, 1216059, 1493200
Offset: 1

Views

Author

Omar E. Pol, Jan 18 2013

Keywords

Examples

			For n = 6
-----------------------------------------------------
Partitions of 6            Value
-----------------------------------------------------
6 .......................... 0  (all parts are equal)
5 + 1 ...................... 6
4 + 2 ...................... 6
4 + 1 + 1 .................. 6
3 + 3 ...................... 0  (all parts are equal)
3 + 2 + 1 .................. 6
3 + 1 + 1 + 1 .............. 6
2 + 2 + 2 .................. 0  (all parts are equal)
2 + 2 + 1 + 1 .............. 6
2 + 1 + 1 + 1 + 1 .......... 6
1 + 1 + 1 + 1 + 1 + 1 ...... 0  (all parts are equal)
-----------------------------------------------------
The sum of the values is    42
On the other hand p(6) = A000041(6) = 11 and d(6) = A000005(6) = 4, so a(6) = 6*(p(6) - d(6)) = 6*(11 - 4) = 6*7 = 42.
		

Crossrefs

Formula

a(n) = n*(A000041(n) - A000005(n)) = A066186(n) - A038040(n) = n*A144300(n).

A361392 Number of integer partitions of n whose first differences have mean -1.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 1, 3, 2, 5, 4, 8, 7, 12, 12, 19, 19, 29, 31, 43, 48, 65, 73, 97, 110, 142, 164, 208, 240, 301, 350, 432, 504, 617, 719, 874, 1019, 1228, 1434, 1717, 2001, 2385, 2778, 3292, 3831, 4522, 5252, 6177, 7164, 8392, 9722, 11352, 13125, 15283, 17643
Offset: 0

Views

Author

Gus Wiseman, Mar 13 2023

Keywords

Comments

These are partitions where the first part minus the last part is the number of parts minus 1.

Examples

			The a(3) = 1 through a(11) = 8 partitions:
  (21)  .  (32)   (321)  (43)    (422)   (54)     (442)    (65)
           (311)         (331)   (4211)  (432)    (4321)   (533)
                         (4111)          (4221)   (4411)   (4331)
                                         (4311)   (52111)  (4421)
                                         (51111)           (5222)
                                                           (52211)
                                                           (53111)
                                                           (611111)
For example, the partition y = (4,2,2,1) has first differences (-2,0,-1), with mean -1, so y is counted under a(9).
		

Crossrefs

For mean 0 we have A032741.
The 0-appended version is A047993.
For any negative mean we have A144300.
A000041 counts integer partitions, strict A000009.
A008284/A058398/A327482 count partitions by mean.
A067538 counts partitions with integer mean, ranks A316413.
A326567/A326568 gives mean of prime indices, conjugate A326839/A326840.
A360614/A360615 gives mean of 0-appended first differences of prime indices.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Mean[Differences[#]]==-1&]],{n,0,30}]
Previous Showing 21-22 of 22 results.