cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 40 results.

A145630 Denominator of the polynomial A_l(x) = sum_{d=1..l-1} x^(l-d)/d for index l=2n+1 evaluated at x=11.

Original entry on oeis.org

2, 12, 60, 840, 2520, 2520, 32760, 65520, 1113840, 4232592, 4232592, 97349616, 2433740400, 7301221200, 211735414800, 13127595717600, 13127595717600, 13127595717600, 485721041551200, 485721041551200, 19914562703599200
Offset: 1

Views

Author

Artur Jasinski, Oct 14 2008

Keywords

Comments

For numerators see A145628. For general properties of A_l(x) see A145609.

Crossrefs

Programs

  • Mathematica
    m = 11; aa = {}; Do[k = 0; Do[k = k + m^(2 r + 1 - d)/d, {d, 1, 2 r}]; AppendTo[aa, Denominator[k]], {r, 1, 30}]; aa (*Artur Jasinski*)

Extensions

Edited by R. J. Mathar, Aug 21 2009

A145631 Numerator of the polynomial A_l(x) = sum_{d=1..l-1} x^(l-d)/d for index l=2n+1 evaluated at x=12.

Original entry on oeis.org

150, 21651, 15588874, 31427171529, 452551270138, 716841211899677, 1341926748676207290, 3864749036187477202407, 7095679230440208145951582, 6471259458161469829121064993, 931861361975251655393445326142
Offset: 1

Views

Author

Artur Jasinski, Oct 14 2008

Keywords

Comments

For denominators see A145632. For general properties of A_l(x) see A145609.

Crossrefs

Programs

  • Mathematica
    m = 12; aa = {}; Do[k = 0; Do[k = k + m^(2 r + 1 - d)/d, {d, 1, 2 r}]; AppendTo[aa, Numerator[k]], {r, 1, 25}]; aa (* Artur Jasinski *)
    a[n_,m_]:=m^n(Log[m/(m-1)]-Beta[1/m,1+n,0])
    Table[12 a[2 n, 12] // FullSimplify // Numerator,{n,1,10}] (* Gerry Martens , Jun 04 2016 *)

Extensions

Edited by R. J. Mathar, Aug 21 2009

A145632 Denominator of the polynomial A_l(x) = sum_{d=1..l-1} x^(l-d)/d for index l=2n+1 evaluated at x=12.

Original entry on oeis.org

1, 1, 5, 70, 7, 77, 1001, 20020, 255255, 1616615, 1616615, 74364290, 185910725, 79676025, 770201575, 191009990600, 2170568075, 45581929575, 562177131425, 1124354262850, 3292751769775, 1557471587103575, 1557471587103575
Offset: 1

Views

Author

Artur Jasinski, Oct 14 2008

Keywords

Comments

For numerators see A145631. For general properties of A_l(x) see A145609.

Crossrefs

Programs

  • Mathematica
    m = 12; aa = {}; Do[k = 0; Do[k = k + m^(2 r + 1 - d)/d, {d, 1, 2 r}]; AppendTo[aa, Denominator[k]], {r, 1, 30}]; aa (*Artur Jasinski*)

Extensions

Edited by R. J. Mathar, Aug 21 2009

A145633 Numerator of the polynomial A_l(x) = sum_{d=1..l-1} x^(l-d)/d for index l=2n+1 evaluated at x=13.

Original entry on oeis.org

351, 356629, 100451221, 237667596101, 361492413720217, 672014397106339313, 113570433110971729997, 7677361278301689081731, 7352352984186917577941057, 118042027161120961713900643051, 6649700863409814176549753413113
Offset: 1

Views

Author

Artur Jasinski, Oct 14 2008

Keywords

Comments

For denominators see A145634. For general properties of A_l(x) see A145609.

Crossrefs

Programs

  • Mathematica
    m = 13; aa = {}; Do[k = 0; Do[k = k + m^(2 r + 1 - d)/d, {d, 1, 2 r}]; AppendTo[aa, Numerator[k]], {r, 1, 25}]; aa (*Artur Jasinski*)

Extensions

Edited by R. J. Mathar, Aug 21 2009

A145634 Denominator of the polynomial A_l(x) = sum_{d=1..l-1} x^(l-d)/d for index l=2n+1 evaluated at x=13.

Original entry on oeis.org

2, 12, 20, 280, 2520, 27720, 27720, 11088, 62832, 5969040, 1989680, 137287920, 686439600, 882565200, 25594390800, 1586852229600, 1586852229600, 11107965607200, 410994727466400, 410994727466400, 16850783826122400
Offset: 1

Views

Author

Artur Jasinski, Oct 14 2008

Keywords

Comments

For numerators see A145633. For general properties of A_l(x) see A145609.

Crossrefs

Programs

  • Mathematica
    m = 13; aa = {}; Do[k = 0; Do[k = k + m^(2 r + 1 - d)/d, {d, 1, 2 r}]; AppendTo[aa, Denominator[k]], {r, 1, 30}]; aa (*Artur Jasinski*)

Extensions

Edited by R. J. Mathar, Aug 21 2009

A145635 Numerator of the polynomial A_l(x) = sum_{d=1..l-1} x^(l-d)/d for index l=2n+1 evaluated at x=14.

Original entry on oeis.org

203, 239141, 117179713, 91868896777, 13504727827262, 58232386391172539, 74188060262353918141, 23265375698274188872561, 19380057956662399331381851, 360856679153053875550375858367
Offset: 1

Views

Author

Artur Jasinski, Oct 14 2008

Keywords

Comments

For denominators see A145638. For general properties of A_l(x) see A145609.

Crossrefs

Programs

  • Mathematica
    m = 14; aa = {}; Do[k = 0; Do[k = k + m^(2 r + 1 - d)/d, {d, 1, 2 r}]; AppendTo[aa, Numerator[k]], {r, 1, 25}]; aa (*Artur Jasinski*)

Extensions

Edited by R. J. Mathar, Aug 21 2009

A145636 Denominator of the polynomial A_l(x) = sum_{d=1..l-1} x^(l-d)/d for index l=2n+1 evaluated at x=15.

Original entry on oeis.org

2, 4, 4, 56, 56, 616, 8008, 16016, 816816, 5173168, 5173168, 118982864, 118982864, 356948592, 3450503056, 213931189472, 19448289952, 58344869856, 719586728224, 719586728224, 4214722265312, 1993563631492576, 1993563631492576
Offset: 1

Views

Author

Artur Jasinski, Oct 14 2008

Keywords

Comments

For numerators see A145637. For general properties of A_l(x) see A145609.

Crossrefs

Programs

  • Mathematica
    m = 15; aa = {}; Do[k = 0; Do[k = k + m^(2 r + 1 - d)/d, {d, 1, 2 r}]; AppendTo[aa, Denominator[k]], {r, 1, 30}]; aa (*Artur Jasinski*)

Extensions

Edited by R. J. Mathar, Aug 21 2009

A145637 Numerator of the polynomial A_l(x) = sum_{d=1..l-1} x^(l-d)/d for index l=2n+1 evaluated at x=15.

Original entry on oeis.org

465, 209565, 47152315, 148529794155, 33419203686359, 82712529123751895, 241934147686974440055, 108870366459138498280005, 1249287455118614267774548855, 1780234623544025331578797259451
Offset: 1

Views

Author

Artur Jasinski, Oct 14 2008

Keywords

Comments

For denominators see A145636. For general properties of A_l(x) see A145609.

Crossrefs

Programs

  • Mathematica
    m = 15; aa = {}; Do[k = 0; Do[k = k + m^(2 r + 1 - d)/d, {d, 1, 2 r}]; AppendTo[aa, Numerator[k]], {r, 1, 25}]; aa (*Artur Jasinski*)

Extensions

Edited by R. J. Mathar, Aug 21 2009

A145638 Denominator the polynomial A_l(x) = sum_{d=1..l-1} x^(l-d)/d for index l=2n+1 evaluated at x=14.

Original entry on oeis.org

1, 6, 15, 60, 45, 990, 6435, 10296, 43758, 4157010, 2078505, 191222460, 239028075, 1434168450, 20795442525, 10314539492400, 2578634873100, 1289317436550, 23852372576175, 95409490304700, 977947275623175, 84103465703593050
Offset: 1

Views

Author

Artur Jasinski, Oct 16 2008

Keywords

Comments

For numerators see A145635. For general properties of A_l(x) see A145609.
m^(2n)Log[m/(m-1)]-A[1,2n+1](m)

Crossrefs

Programs

  • Mathematica
    m = 14; aa = {}; Do[k = 0; Do[k = k + m^(2 r + 1 - d)/d, {d, 1, 2 r}]; AppendTo[aa, Denominator[k]], {r, 1, 30}]; aa (*Artur Jasinski*)

Extensions

Edited by R. J. Mathar, Aug 21 2009

A145639 Numerator of the polynomial A_l(x) = sum_{d=1..l-1} x^(l-d)/d for index l=2n+1 evaluated at x=16.

Original entry on oeis.org

264, 203020, 86622136, 155226869062, 357642706328312, 1007121861020611852, 3351701553476597181976, 858035597690008879399669, 1244723640382306214386523896, 1210867157363907485355224291060
Offset: 1

Views

Author

Artur Jasinski, Oct 14 2008

Keywords

Comments

For denominators see A145640. For general properties of A_l(x) see A145609.

Crossrefs

Programs

  • Mathematica
    m = 16; aa = {}; Do[k = 0; Do[k = k + m^(2 r + 1 - d)/d, {d, 1, 2 r}]; AppendTo[aa, Numerator[k]], {r, 1, 25}]; aa (*Artur Jasinski*)

Extensions

Edited by R. J. Mathar, Aug 21 2009
Previous Showing 31-40 of 40 results.