A329137 Number of integer partitions of n whose differences are an aperiodic word.
1, 1, 2, 2, 4, 6, 8, 14, 20, 25, 39, 54, 69, 99, 130, 167, 224, 292, 373, 483, 620, 773, 993, 1246, 1554, 1946, 2421, 2987, 3700, 4548, 5575, 6821, 8330, 10101, 12287, 14852, 17935, 21599, 25986, 31132, 37295, 44539, 53112, 63212, 75123, 89055, 105503, 124682
Offset: 0
Keywords
Examples
The a(1) = 1 through a(7) = 14 partitions: (1) (2) (3) (4) (5) (6) (7) (1,1) (2,1) (2,2) (3,2) (3,3) (4,3) (3,1) (4,1) (4,2) (5,2) (2,1,1) (2,2,1) (5,1) (6,1) (3,1,1) (4,1,1) (3,2,2) (2,1,1,1) (2,2,1,1) (3,3,1) (3,1,1,1) (4,2,1) (2,1,1,1,1) (5,1,1) (2,2,2,1) (3,2,1,1) (4,1,1,1) (2,2,1,1,1) (3,1,1,1,1) (2,1,1,1,1,1) With differences: () () () () () () () (0) (1) (0) (1) (0) (1) (2) (3) (2) (3) (1,0) (0,1) (4) (5) (2,0) (3,0) (0,2) (1,0,0) (0,1,0) (1,0) (2,0,0) (2,1) (1,0,0,0) (4,0) (0,0,1) (1,1,0) (3,0,0) (0,1,0,0) (2,0,0,0) (1,0,0,0,0)
Crossrefs
The Heinz numbers of these partitions are given by A329135.
The periodic version is A329144.
The augmented version is A329136.
Aperiodic binary words are A027375.
Aperiodic compositions are A000740.
Numbers whose binary expansion is aperiodic are A328594.
Numbers whose prime signature is aperiodic are A329139.
Programs
-
Mathematica
aperQ[q_]:=Array[RotateRight[q,#1]&,Length[q],1,UnsameQ]; Table[Length[Select[IntegerPartitions[n],aperQ[Differences[#]]&]],{n,0,30}]
Comments