cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A210778 Number of partitions of 2^n into powers of 2 less than or equal to 512.

Original entry on oeis.org

1, 2, 4, 10, 36, 202, 1828, 27338, 692004, 30251722, 2320518947, 314039061413, 69808185542089, 22148021690928529, 8756818568093328161, 3918553907116206319169, 1872922535299778812595329, 926165546297497921388714241, 465979162430464375966575440385
Offset: 0

Views

Author

Alois P. Heinz, Mar 26 2012

Keywords

Crossrefs

Column k=9 of A152977.

Programs

  • Maple
    gf:= (1+ (-1021 +(346460 +(-50088798 +(3339435542 +(-105163418774 +(1550660009494 +(-10204692593686 +(26190980411414 +(-15802918567958 +(-5517732454379 +(-3652534938428 +(-4465138103744 +(75591601244160 +(5811316119175168 +(-160490503232552960 +(691978531999055872 -537373113935986688*x) *x) *x) *x) *x) *x) *x) *x) *x) *x) *x) *x) *x) *x) *x) *x) *x)/ mul(2^j*x-1, j=0..9): a:= n-> coeff(series(gf, x, n+1), x, n): seq(a(n), n=0..20);

Formula

G.f.: (-537373113935986688*x^17 +691978531999055872*x^16 -160490503232552960*x^15 +5811316119175168*x^14 +75591601244160*x^13 -4465138103744*x^12 -3652534938428*x^11 -5517732454379*x^10 -15802918567958*x^9 +26190980411414*x^8 -10204692593686*x^7 +1550660009494*x^6 -105163418774*x^5 +3339435542*x^4 -50088798*x^3 +346460*x^2 -1021*x+1) / Product_{j=0..9} (2^j*x-1).
a(n) = [x^2^(n-1)] 1/(1-x) * 1/Product_{j=0..8} (1-x^(2^j)) for n>0.

A210779 Number of partitions of 2^n into powers of 2 less than or equal to 1024.

Original entry on oeis.org

1, 2, 4, 10, 36, 202, 1828, 27338, 692004, 30251722, 2320518948, 316359580361, 77160820913241, 31769732129318865, 19210889607930498081, 14781930262928342616641, 13037860166110209522457729, 12369535268518332988593592577, 12186672180675798897571822711297
Offset: 0

Views

Author

Alois P. Heinz, Mar 26 2012

Keywords

Crossrefs

Column k=10 of A152977.

Programs

  • Maple
    gf:= (-1 +(2045 +(-1391964 +(404863838 +(-54630364694 +(3524745413782 +(-109238000834070 +(1598080542315542 +(-10475796196345878 +(26835366859855894 +(-16176670881134614 +(-5646507818862569 +(-3738333173327178 +(-2458328204903632 +(-5556995021730048 +(-21573396097321885696 +(851800662334219223040 +(-1833431416452222550016 +(-47353367247905900986368
    +(143817459476148640546816 -95460882767931143880704*x) *x) *x) *x) *x) *x) *x) *x) *x) *x) *x) *x) *x) *x) *x) *x) *x) *x) *x) *x)/ mul(2^j*x-1, j=0..10): a:= n-> coeff(series(gf, x, n+1), x, n): seq(a(n), n=0..20);

Formula

G.f.: (-95460882767931143880704*x^20 +143817459476148640546816*x^19 -47353367247905900986368*x^18 -1833431416452222550016*x^17 +851800662334219223040*x^16 -21573396097321885696*x^15 -5556995021730048*x^14 -2458328204903632*x^13 -3738333173327178*x^12 -5646507818862569*x^11 -16176670881134614*x^10 +26835366859855894*x^9 -10475796196345878*x^8 +1598080542315542*x^7 -109238000834070*x^6 +3524745413782*x^5 -54630364694*x^4 +404863838*x^3 -1391964*x^2 +2045*x-1) / Product_{j=0..10} (2^j*x-1).
a(n) = [x^2^(n-1)] 1/(1-x) * 1/Product_{j=0..9} (1-x^(2^j)) for n>0.
Previous Showing 11-12 of 12 results.