1, 2, 8, 39, 2495, 3895, 4714, 8592
Offset: 1
A373300
Sum of successive integers in a row of length p(n) where p counts integer partitions.
Original entry on oeis.org
1, 5, 15, 45, 105, 264, 555, 1221, 2445, 4935, 9324, 17941, 32522, 59400, 104808, 184569, 315711, 540540, 902335, 1504800, 2462724, 4014513, 6444425, 10316250, 16283707, 25610886, 39841865, 61720659, 94687230, 144731706, 219282679, 330996105, 495901413, 740046425
Offset: 1
Let's put the list of integers in a triangle whose rows have length p(n), number of integer partitions of n.
.
1 | 1
5 | 2 3
15 | 4 5 6
45 | 7 8 9 10 11
105 | 12 13 14 15 16 17 18
264 | 19 20 21 22 23 24 25 26 27 28 29
555 | 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
.
The sequence gives the row sums of this triangle.
Cf.
A373301, the same principle, but starting from integer zero instead of 1.
Cf.
A006003, row sums of the integers but for the linear triangle.
-
Module[{s = 0},
Table[s +=
PartitionsP[n - 1]; (s + PartitionsP[n])*(s + PartitionsP[n] - 1)/2 -
s*(s - 1)/2, {n, 1, 30}]]
Comments
Examples
Crossrefs
Formula