This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
from sympy import factorial as f def a007623(n, p=2): return n if n0 else '0' for i in x)[::-1] return 0 if n==0 else sum([int(y[i])*f(i + 1) for i in range(len(y))]) def a153880(n): x=(str(a007623(n)) + '0')[::-1] return 0 if n==0 else sum([int(x[i])*f(i + 1) for i in range(len(x))]) def a(n): return 0 if n==0 else a153880(a(n//2)) if n%2==0 else 1 + a255411(a((n - 1)//2)) print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 20 2017
from sympy import factorial as f def a007623(n, p=2): return n if n0 else '0' for i in x)[::-1] return 0 if n==0 else sum([int(y[i])*f(i + 1) for i in range(len(y))]) def a153880(n): x=(str(a007623(n)) + '0')[::-1] return 0 if n==0 else sum([int(x[i])*f(i + 1) for i in range(len(x))]) def a(n): return 0 if n==0 else a255411(a(n//2)) if n%2==0 else 1 + a153880(a((n - 1)//2)) print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 20 2017
; MIT Scheme (define (A153883 n) (let loop ((n n) (z 0) (i 2) (f 1)) (cond ((zero? n) z) (else (loop (floor->exact (/ n i)) (+ (* f (modulo n i)) z) (1+ i) (* f (+ i 1)))))))
Comments