cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A157067 Number of integer sequences of length n+1 with sum zero and sum of absolute values 36.

Original entry on oeis.org

2, 108, 3242, 68190, 1107920, 14692734, 164826956, 1604095524, 13799638910, 106481351240, 745616925614, 4783532975546, 28342922553764, 156153427053890, 804648531335960, 3897769097766104, 17828728267167326, 77310179609631564, 318931533062574470
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2009

Keywords

Crossrefs

Programs

Formula

a(n) = T(n,18); T(n,k) = Sum_{i=1..n} binomial(n+1, i)*binomial(k-1, i-1)*binomial(n-i+k, k).
From G. C. Greubel, Jan 25 2022: (Start)
a(n) = (n+1)*binomial(n+17, 18)*Hypergeometric3F2([-17, -n, 1-n], [2, -n-17], 1).
a(n) = (9075135300/36!)*n*(n+1)*(2277243837099849063333888000000 + 5681969493970603176728985600000*n + 9596433215362696956739584000000*n^2 + 8930829932059932571221098496000*n^3 + 7373779588191144329720945049600*n^4 + 3932042780814990233298927943680*n^5 + 2083614342312300867651696279552*n^6 + 736784230189243202709052538880*n^7 + 281032534792096725785629118976*n^8 + 70909200002908166006639354112*n^9 + 20771324838612576755137269504*n^10 + 3902581566393773771469894400*n^11 + 915676404299665995395824064*n^12 + 131515117514883976361738848*n^13 + 25463636023538740834106624*n^14 + 2840680826306519243676400*n^15 + 464075830766617076558690*n^16 + 40553554340342769625905*n^17 + 5687795599925219641425*n^18 + 390183416511400627800*n^19 + 47640166465301752080*n^20 + 2555532347549932860*n^21 + 274751324750187660*n^22 + 11400551973525000*n^23 + 1089674111434740*n^24 + 34284748268550*n^25 + 2937122649078*n^26 + 67743183720*n^27 + 5238258144*n^28 + 83536028*n^29 + 5866156*n^30 + 57800*n^31 + 3706*n^32 + 17*n^33 + n^34).
G.f.: 2*x*(1 + 17*x + 289*x^2 + 2312*x^3 + 18496*x^4 + 92480*x^5 + 462400*x^6 + 1618400*x^7 + 5664400*x^8 + 14727440*x^9 + 38291344*x^10 + 76582688*x^11 + 153165376*x^12 + 240688448*x^13 + 378224704*x^14 + 472780880*x^15 + 590976100*x^16 + 590976100*x^17 + 590976100*x^18 + 472780880*x^19 + 378224704*x^20 + 240688448*x^21 + 153165376*x^22 + 76582688*x^23 + 38291344*x^24 + 14727440*x^25 + 5664400*x^26 + 1618400*x^27 + 462400*x^28 + 92480*x^29 + 18496*x^30 + 2312*x^31 + 289*x^32 + 17*x^33 + x^34)/(1-x)^37. (End)

A157069 Number of integer sequences of length n+1 with sum zero and sum of absolute values 40.

Original entry on oeis.org

2, 120, 4002, 93500, 1687002, 24836196, 309182762, 3337508646, 31830097752, 272125000774, 2109875558208, 14977318285254, 98118326104708, 597217934730774, 3397036441760412, 18148572883826236, 91470993083858322, 436643312483178036, 1981038544180652162
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2009

Keywords

Crossrefs

Programs

Formula

a(n) = T(n,20); T(n,k) = Sum_{i=1..n} binomial(n+1,i)*binomial(k-1,i-1)*binomial(n-i+k,k).
From G. C. Greubel, Jan 25 2022: (Start)
a(n) = (n+1)*binomial(n+19, 20)*Hypergeometric3F2([-19, -n, 1-n], [2, -n-19], 1).
a(n) = (137846528820/40!)*n*(n+1)*(295950609069496384270872084480000000 + 768802633735657375654446366720000000*n + 1329504929585504813849213140992000000*n^2 + 1290742342817244773843889039605760000*n^3 + 1094357439529328748458516078002176000*n^4 + 612766113778575140689735509285273600*n^5 + 334228753141512703020765378377809920*n^6 + 125103295909205358813292403873120256*n^7 + 49218727808847235410751174949228544*n^8 + 13269339361037181895414921845144576*n^9 + 4016584445427935868170163264804864*n^10 + 815165270428049073818572136963328*n^11 + 197974483136507211917478313071872*n^12 + 31108483670185057904409322050688*n^13 + 6244038933930696351877891958272*n^14 + 773683666573321735532607476256*n^15 + 131217385198850594964429765744*n^16 + 12969478215579974430537627276*n^17 + 1890935510804343168840278104*n^18 + 150029328423053669455781465*n^19 + 19066083072333125878657535*n^20 + 1216465853960978843551515*n^21 + 136285407600184771625385*n^22 + 6973959244303571061060*n^23 + 695382022718273834940*n^24 + 28325593615993410660*n^25 + 2534141220949541220*n^26 + 81059848291860174*n^27 + 6552284226337026*n^28 + 160984848978954*n^29 + 11828920639006*n^30 + 215437887572*n^31 + 14466923228*n^32 + 183962712*n^33 + 11343228*n^34 + 89889*n^35 + 5111*n^36 + 19*n^37 + n^38).
G.f.: 2*x*(1 + 19*x + 361*x^2 + 3249*x^3 + 29241*x^4 + 165699*x^5 + 938961*x^6 + 3755844*x^7 + 15023376*x^8 + 45070128*x^9 + 135210384*x^10 + 315490896*x^11 + 736145424*x^12 + 1367127216*x^13 + 2538950544*x^14 + 3808425816*x^15 + 5712638724*x^16 + 6982113996*x^17 + 8533694884*x^18 + 8533694884*x^19 + 8533694884*x^20 + 6982113996*x^21 + 5712638724*x^22 + 3808425816*x^23 + 2538950544*x^24 + 1367127216*x^25 + 736145424*x^26 + 315490896*x^27 + 135210384*x^28 + 45070128*x^29 + 15023376*x^30 + 3755844*x^31 + 938961*x^32 + 165699*x^33 + 29241*x^34 + 3249*x^35 + 361*x^36 + 19*x^37 + x^38)/(1-x)^41. (End)

A157070 Number of integer sequences of length n+1 with sum zero and sum of absolute values 42.

Original entry on oeis.org

2, 126, 4412, 108220, 2049770, 31674678, 413820584, 4687156248, 46894786710, 420487598410, 3418440803052, 25437258929836, 174630760523102, 1113521228343010, 6633053884912560, 37097838553993648, 195668363575483134, 977073310632294978, 4635352353992402420
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2009

Keywords

Crossrefs

Programs

Formula

a(n) = T(n,21); T(n,k) = Sum_{i=1..n} binomial(n+1, i)*binomial(k-1, i-1)*binomial(n-i+k, k).
From G. C. Greubel, Jan 25 2022: (Start)
a(n) = (n+1)*binomial(n+20, 21)*Hypergeometric3F2([-20, -n, 1-n], [2, -n-20], 1).
a(n) = (538257874440/42!)*n*(n+1)*(124299255809188481393766275481600000000 + 328816118350366025460284915712000000000*n + 574832876343430323089683765002240000000*n^2 + 568701882574952901291417659454259200000*n^3 + 488065218731065719417147635733626880000*n^4 + 279248916577588134058859235459858432000*n^5 + 154338522148314741971664420691673088000*n^6 + 59227959344696504761998117194266705920*n^7 + 23633263646950664110615399338389323776*n^8 + 6557497087812561104289290673945292800*n^9 + 2014840321470361119845933104915307520*n^10 + 422701102488339328367203562820695040*n^11 + 104284338041749995423701069631220992*n^12 + 17025052804207868558201481522726400*n^13 + 3473748992461285895698788698610560*n^14 + 449827918639409055961252979192960*n^15 + 77602697715487702683123150572128*n^16 + 8071528554520601160114398770800*n^17 + 1197769342263854188918636742220*n^18 + 100831028153769404548233777380*n^19 + 13049306298068383096447853569*n^20 + 892237320110273631864787000*n^21 + 101851737197591285675901050*n^22 + 5654771034611195278152900*n^23 + 574799001272234774582445*n^24 + 25804389773082709176000*n^25 + 2354558801452942771200*n^26 + 84727960701572097480*n^27 + 6988357410140155794*n^28 + 198659321097901200*n^29 + 14901112723277580*n^30 + 327062325560360*n^31 + 22429224033778*n^32 + 366602803600*n^33 + 23094295940*n^34 + 264617940*n^35 + 15377517*n^36 + 110200*n^37 + 5930*n^38 + 20*n^39 + n^40).
G.f.: 2*x*(1 + 20*x + 400*x^2 + 3800*x^3 + 36100*x^4 + 216600*x^5 + 1299600*x^6 + 5523300*x^7 + 23474025*x^8 + 75116880*x^9 + 240374016*x^10 + 600935040*x^11 + 1502337600*x^12 + 3004675200*x^13 + 6009350400*x^14 + 9765194400*x^15 + 15868440900*x^16 + 21157921200*x^17 + 28210561600*x^18 + 31031617760*x^19 + 34134779536*x^20 + 31031617760*x^21 + 28210561600*x^22 + 21157921200*x^23 + 15868440900*x^24 + 9765194400*x^25 + 6009350400*x^26 + 3004675200*x^27 + 1502337600*x^28 + 600935040*x^29 + 240374016*x^30 + 75116880*x^31 + 23474025*x^32 + 5523300*x^33 + 1299600*x^34 + 216600*x^35 + 36100*x^36 + 3800*x^37 + 400*x^38 + 20*x^39 + x^40)/(1-x)^43. (End)

A157072 Number of integer sequences of length n+1 with sum zero and sum of absolute values 46.

Original entry on oeis.org

2, 138, 5292, 142140, 2947590, 49858158, 712832792, 8832976488, 96648771870, 947399938870, 8416542780492, 68407265558268, 512700872216442, 3567168162771570, 23172711963346320, 141251698411654288, 811481822951916942, 4410812923746903558, 22762369531189431140
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2009

Keywords

Crossrefs

Programs

Formula

a(n) = T(n,23); T(n,k) = Sum_{i=1..n} binomial(n+1, i)*binomial(k-1, i-1)*binomial(n-i+k, k).
From G. C. Greubel, Jan 25 2022: (Start)
a(n) = (n+1)*binomial(n+22, 23)*Hypergeometric3F2([-22, -n, 1-n], [2, -n-22], 1).
a(n) = (8233430727600/46!)*n*(n+1)*(29057685629025609672383529751884595200000000 + 79452183147274795032078126183088128000000000*n + 141714570491802789957788787173889146880000000*n^2 + 145059233577401185360645255317602854502400000*n^3 + 127311238631698355225728753712566590504960000*n^4 + 75715351658040622253223159728830038933504000*n^5 + 42877191833222765234078376290791889436672000*n^6 + 17200430297827490899524392276866711148298240*n^7 + 7044053985717499896347935293286272148242432*n^8 + 2056356540242318373959793917651894923345920*n^9 + 649440492446852015686988427724931399725056*n^10 + 144397972805007063337564416010542851069952*n^11 + 36667320366669588030104490299079773399040*n^12 + 6396965852709968433012959028877233569280*n^13 + 1345127187454407600202359730144941101312*n^14 + 187910794743597175883242789084896626944*n^15 + 33447938991896902409607083541643054848*n^16 + 3794396649208001585975013323140823680*n^17 + 581596730556665903213714682678333648*n^18 + 54086974909357210248192242794085176*n^19 + 7237583584021550113709859989257256*n^20 + 555028323889889756001001018844270*n^21 + 65573979319258648679066391179799*n^22 + 4158352352131928037710752254818*n^23 + 437873818310682613098943721859*n^24 + 22960062441581678852556730250*n^25 + 2172171883621041163474766945*n^26 + 93893204989495788867340350*n^27 + 8036153654616364534710453*n^28 + 284537563980038034430380*n^29 + 22164572970995075714214*n^30 + 636147121922304974388*n^31 + 45339923676136414270*n^32 + 1038127683748744820*n^33 + 68016631509831858*n^34 + 1212869363347796*n^35 + 73356699164562*n^36 + 981609846470*n^37 + 55012667347*n^38 + 519602314*n^39 + 27075279*n^40 + 160930*n^41 + 7821*n^42 + 22*n^43 + n^44).
G.f.: 2*x*(1 + 22*x + 484*x^2 + 5082*x^3 + 53361*x^4 + 355740*x^5 + 2371600*x^6 + 11265100*x^7 + 53509225*x^8 + 192633210*x^9 + 693479556*x^10 + 1964858742*x^11 + 5567099769*x^12 + 12724799472*x^13 + 29085255936*x^14 + 54534854880*x^15 + 102252852900*x^16 + 159059993400*x^17 + 247426656400*x^18 + 321654653320*x^19 + 418151049316*x^20 + 456164781072*x^21 + 497634306624*x^22 + 456164781072*x^23 + 418151049316*x^24 + 321654653320*x^25 + 247426656400*x^26 + 159059993400*x^27 + 102252852900*x^28 + 54534854880*x^29 + 29085255936*x^30 + 12724799472*x^31 + 5567099769*x^32 + 1964858742*x^33 + 693479556*x^34 + 192633210*x^35 + 53509225*x^36 + 11265100*x^37 + 2371600*x^38 + 355740*x^39 + 53361*x^40 + 5082*x^41 + 484*x^42 + 22*x^43 + x^44)/(1-x)^47. (End)

A157073 Number of integer sequences of length n+1 with sum zero and sum of absolute values 48.

Original entry on oeis.org

2, 144, 5762, 161480, 3493730, 61651128, 919453346, 11883194148, 135595653690, 1385919151540, 12835654787802, 108738668285884, 849286949294602, 6156408373152940, 41657479594194090, 264432781857156298, 1581589562174104296, 8947669593793415178
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2009

Keywords

Crossrefs

Programs

Formula

a(n) = T(n,24); T(n,k) = Sum_{i=1..n} binomial(n+1, i)*binomial(k-1, i-1)*binomial(n-i+k, k).
From G. C. Greubel, Jan 27 2022: (Start)
a(n) = (n+1)*binomial(n+23, 24)*Hypergeometric3F2([-23, -n, 1-n], [2, -n-23], 1).
a(n) = (32247603683100/48!)*n*(n+1)*(16039842467222136539155708423040296550400000000 + 44525931866763275880171946837357992345600000000*n + 80162352992638760747141669078132808744960000000*n^2 + 83332132056036918488105323040316226063564800000*n^3 + 73898939901046923323215546964133115613675520000*n^4 + 44723032603767485653970945505703213072908288000*n^5 + 25612689570363639698514348299721610493952000000*n^6 + 10480812936564898576921267191518638010904084480*n^7 + 4344005319097142489606724072829615182825652224*n^8 + 1297122051885262240041808754289430257096523776*n^9 + 414887762782195453530600601421093882956775424*n^10 + 94644812314641495323136291475493075984289792*n^11 + 24355352682168634128406213057069994741673984*n^12 + 4374473519129303099715556660819067718420480*n^13 + 932704708306541825734118078032140866985984*n^14 + 134664684009917015892204293368196583403264*n^15 + 24318248584827829951503296783169426424064*n^16 + 2863809547176445630879170275831524932864*n^17 + 445554853840168519046977908135462996864*n^18 + 43232734952768495830917555723936691056*n^19 + 5874830266761134611938171223806383184*n^20 + 472840057219714797927879342154953928*n^21 + 56755099941609678328578532372768784*n^22 + 3803612022719773196434862241794913*n^23 + 407080783477921724014741379761599*n^24 + 22745052288898786827887020700757*n^25 + 2187954196667457627798376601499*n^26 + 101789002477485622214691512935*n^27 + 8861565620717173319451105401*n^28 + 341896269373157379303910179*n^29 + 27099899470126559155285701*n^30 + 860938389633999087289098*n^31 + 62459741766357695776566*n^32 + 1615864725980444668850*n^33 + 107800168679533475566*n^34 + 2233886413294116126*n^35 + 137618394169017186*n^36 + 2229052716036366*n^37 + 127282327855386*n^38 + 1552111826309*n^39 + 82428676891*n^40 + 711564777*n^41 + 35254791 n^42 + 192027*n^43 + 8901*n^44 + 23*n^45 + n^46).
G.f.: 2*x*(1 + 23*x + 529*x^2 + 5819*x^3 + 64009*x^4 + 448063*x^5 + 3136441*x^6 + 15682205*x^7 + 78411025*x^8 + 297961895*x^9 + 1132255201*x^10 + 3396765603*x^11 + 10190296809*x^12 + 24747863679*x^13 + 60101954649*x^14 + 120203909298*x^15 + 240407818596*x^16 + 400679697660*x^17 + 667799496100*x^18 + 934919294540*x^19 + 1308887012356*x^20 + 1546866469148*x^21 + 1828114918084*x^22 + 1828114918084*x^23 + 1828114918084*x^24 + 1546866469148*x^25 + 1308887012356*x^26 + 934919294540*x^27 + 667799496100*x^28 + 400679697660*x^29 + 240407818596*x^30 + 120203909298*x^31 + 60101954649*x^32 + 24747863679*x^33 + 10190296809*x^34 + 3396765603*x^35 + 1132255201*x^36 + 297961895*x^37 + 78411025*x^38 + 15682205*x^39 + 3136441*x^40 + 448063*x^41 + 64009*x^42 + 5819*x^43 + 529*x^44 + 23*x^45 + x^46)/(1-x)^49. (End)
Previous Showing 21-25 of 25 results.