A217057
Number of permutations in S_n containing exactly one increasing subsequence of length 4.
Original entry on oeis.org
0, 0, 0, 0, 1, 12, 102, 770, 5545, 39220, 276144, 1948212, 13817680, 98679990, 710108396, 5150076076, 37641647410, 277202062666, 2056218941678, 15358296210724, 115469557503753, 873561194459596, 6647760790457218, 50871527629923754, 391345137795371013
Offset: 0
a(4) = 1: 1234.
a(5) = 12: 12453, 12534, 13425, 13452, 14235, 15234, 23145, 23415, 23451, 31245, 41235, 51234.
- Brian Nakamura and Doron Zeilberger, Table of n, a(n) for n = 0..70
- Andrew R. Conway and Anthony J. Guttmann, Counting occurrences of patterns in permutations, arXiv:2306.12682 [math.CO], 2023. See p. 16.
- Brian Nakamura and Doron Zeilberger, Using Noonan-Zeilberger Functional Equations to enumerate (in Polynomial Time!) Generalized Wilf classes; Local copy, pdf file only, no active links
- Brian Nakamura and Doron Zeilberger, Using Noonan-Zeilberger Functional Equations to enumerate (in Polynomial Time!) Generalized Wilf classes, arXiv preprint arXiv:1209.2353, 2012.
- Wikipedia, Enumerations of specific permutation classes
- Wikipedia, Subsequence
A158432
Number of permutations of 1..n containing the relative rank sequence { 45312 } at any spacing.
Original entry on oeis.org
1, 26, 458, 6996, 101072, 1438112, 20598112, 300892896, 4521034917, 70286670034, 1135485759114, 19121776482564, 336412530327804, 6191800556586104, 119301546930406184, 2406376964044265344, 50786085223779295344, 1120447461653440780128, 25810064637612342838624
Offset: 5
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
+add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n])^2, `if`(i<1, 0,
add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))):
a:= n-> n! -g(n, 4, []):
seq(a(n), n=5..25); # Alois P. Heinz, Jul 05 2012
# second Maple program
a:= proc(n) option remember; `if`(n<5, 0, `if`(n=5, 1,
((132-142*n-301*n^2-35*n^3+25*n^4+n^5)*a(n-1)
-2*(10*n^3+33*n^2-181*n-2)*(n-1)^2*a(n-2)
+64*(n-2)^2*(n-1)^3*a(n-3))/ ((n+4)*(n-5)*(n+3)^2)))
end:
seq(a(n), n=5..30); # Alois P. Heinz, Sep 26 2012
-
h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]!/Product[Product[1+l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := If[n == 0 || i === 1, h[Join[l, Array[1 &, n]]]^2, If[i < 1, 0, Sum[g[n - i*j, i - 1, Join[l, Array[i &, j]]], {j, 0, n/i}]]];
a[n_] := n! - g[n, 4, {}];
Table[a[n], {n, 5, 25}] (* Jean-François Alcover, Jun 19 2018, after Alois P. Heinz's first program *)
A159139
Number of permutations of 1..n containing the relative rank sequence { 213465 } at any spacing.
Original entry on oeis.org
1, 37, 891, 18043, 337210, 6081686, 108469917, 1941309261, 35187952132, 649951312000, 12286366975723, 238445927000811, 4762398793018878, 98074791689121162, 2085684931155975120, 45859509146309390064, 1043533983233372354613, 24590543663448304800169
Offset: 6
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
+add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l)
`if`(n=0 or i=1, h([l[], 1$n])^2, `if`(i<1, 0,
add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i)))
end:
a:= n-> n! -g(n, 5, []):
seq(a(n), n=6..30); # Alois P. Heinz, Jul 05 2012
# second Maple program
a:= proc(n) option remember; `if`(n<6, 0, `if`(n=6, 1,
((2475-4819*n^2-2985*n+175*n^4-1021*n^3+n^6+49*n^5)*a(n-1)
-(35*n^4+441*n^3-845*n^2-4147*n-489)*(n-1)^2*a(n-2)
+(-1668+329*n+259*n^2)*(n-1)^2*(n-2)^2*a(n-3)
-225*(n-1)^2*(n-2)^2*(n-3)^2*a(n-4))/ ((n-6)*(n+6)^2*(n+4)^2)))
end:
seq(a(n), n=6..30); # Alois P. Heinz, Sep 26 2012
-
h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]!/Product[Product[1+l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := If[n == 0 || i === 1, h[Join[l, Array[1 &, n]]]^2, If[i < 1, 0, Sum[g[n - i*j, i - 1, Join[l, Array[i &, j]]], {j, 0, n/i}]]];
a[n_] := n! - g[n, 5, {}];
Table[a[n], {n, 6, 30}] (* Jean-François Alcover, Jun 19 2018, from first Maple program *)
A159175
Number of permutations of 1..n containing the relative rank sequence { 1234567 } at any spacing.
Original entry on oeis.org
1, 50, 1578, 40884, 958809, 21353634, 463945294, 9996042284, 215831724525, 4702905606350, 103912444955422, 2336099774748540, 53567906041439136, 1255172323669315848, 30095426182382305848, 739238316780966277616, 18619024923770934306358, 481234428294016650524172
Offset: 7
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
+add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n])^2, `if`(i<1, 0,
add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))):
a:= n-> n! -g(n, 6, []):
seq(a(n), n=7..25); # Alois P. Heinz, Jul 05 2012
# second Maple program
a:= proc(n) option remember; `if`(n<7, 0, `if`(n=7, 1, ((-93464*n+1072*n^4
+72128-125284*n^2+84*n^6+994*n^5-30491*n^3+n^7) *a(n-1)
-4*(14*n^5+399*n^4+1124*n^3-7354*n^2-23983*n-5042)*(n-1)^2 *a(n-2)
+4*(-7359-2629*n+1596*n^2+196*n^3)*(n-1)^2*(n-2)^2 *a(n-3)
-1152*(1+2*n)*(n-1)^2*(n-2)^2*(n-3)^2 *a(n-4))/
((n-7)*(n+9)*(n+8)^2*(n+5)^2)))
end:
seq(a(n), n=7..30); # Alois P. Heinz, Sep 27 2012
-
h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]!/Product[Product[1+l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := If[n == 0 || i === 1, h[Join[l, Array[1 &, n]]]^2, If[i < 1, 0, Sum[g[n - i*j, i - 1, Join[l, Array[i &, j]]], {j, 0, n/i}]]];
a[n_] := n! - g[n, 6, {}];
Table[a[n], {n, 7, 25}] (* Jean-François Alcover, Jun 19 2018, from first Maple program *)
A158434
Number of permutations of 1..n containing the relative rank sequence { 51342 } at any spacing.
Original entry on oeis.org
1, 26, 460, 7068, 102676, 1466870, 21055493, 307660035, 4616675543, 71598646435, 1153132523804
Offset: 5
A158424
Number of permutations of 1..n containing the relative rank sequence { 41235 } at any spacing.
Original entry on oeis.org
1, 26, 459, 7037, 102075, 1457407, 20922336, 305907060, 4594540541, 71326622649, 1149849718045
Offset: 5
A158425
Number of permutations of 1..n containing the relative rank sequence { 41352 } at any spacing.
Original entry on oeis.org
1, 26, 462, 7136, 104123, 1491822, 21438666, 313144000, 4691684510, 72594030500
Offset: 5
A158426
Number of permutations of 1..n containing the relative rank sequence { 41523 } at any spacing.
Original entry on oeis.org
1, 26, 460, 7071, 102788, 1469419, 21101676, 308396208, 4627521637, 71750494216, 1155187096545
Offset: 5
A158427
Number of permutations of 1..n containing the relative rank sequence { 41532 } at any spacing.
Original entry on oeis.org
1, 26, 461, 7102, 103397, 1479242, 21244523, 310353510, 4653395194, 72084982176, 1159451127978
Offset: 5
A158428
Number of permutations of 1..n containing the relative rank sequence { 42513 } at any spacing.
Original entry on oeis.org
1, 26, 461, 7104, 103479, 1481275, 21284288, 311031666, 4663993186, 72241115375, 1161657944287
Offset: 5
Comments