cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A159355 Number of n X n arrays of squares of integers summing to 4.

Original entry on oeis.org

5, 135, 1836, 12675, 58941, 211925, 635440, 1663821, 3921325, 8495531, 17179020, 32795295, 59626581, 103962825, 174792896, 284660665, 450710325, 695946991, 1050740300, 1554600411, 2258257485, 3226077405, 4538848176, 6296973125, 8624108701, 11671286355
Offset: 2

Views

Author

R. H. Hardin, Apr 11 2009

Keywords

Comments

Each array either has four 1's or one 4, and all other elements 0. - Robert Israel, Jun 19 2018

Crossrefs

Programs

  • Maple
    seq(binomial(n^2,4)+n^2, n=2..100);
  • PARI
    Vec(x^2*(5 + 90*x + 801*x^2 + 591*x^3 + 252*x^4 - 88*x^5 + 37*x^6 - 9*x^7 + x^8) / (1 - x)^9 + O(x^40)) \\ Colin Barker, Jun 19 2018

Formula

Empirical: n^2*(n^2+1)*(n^4-7*n^2+18)/24. - R. J. Mathar, Aug 11 2009
From Robert Israel, Jun 19 2018: (Start)
Empirical formula confirmed.
a(n) = binomial(n^2,4)+n^2 = A014626(n^2).
(End)
From Colin Barker, Jun 19 2018: (Start)
G.f.: x^2*(5 + 90*x + 801*x^2 + 591*x^3 + 252*x^4 - 88*x^5 + 37*x^6 - 9*x^7 + x^8) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>10.
(End)

A159363 Number of n X n arrays of squares of integers summing to 6.

Original entry on oeis.org

12, 336, 9688, 184000, 1969212, 14039088, 75099360, 324796176, 1192537500, 3844187424, 11144826264, 29583574384, 72891000364, 168494340000, 368541092736, 768025638240, 1533632745708, 2948331631152, 5478589599000, 9873410641248, 17307337994716, 29583198551632
Offset: 2

Views

Author

R. H. Hardin, Apr 11 2009

Keywords

Comments

All such sequences have holonomic recurrences (cf. comment in A159359). - Georg Fischer, Feb 17 2022

Crossrefs

Programs

  • Maple
    C:=binomial; seq(n^2*C(n^2-1,2)+C(n^2,6),n=2..22); # Georg Fischer, Feb 18 2022
  • Mathematica
    RecurrenceTable[{a[n-1] * (600*n+600*n^2-206*n^3-206*n^4-71*n^5-71*n^6+14*n^7+14*n^8-n^9-n^10) + a[n] * (-672-232*n+2424*n^2-2090*n^3+492*n^4+203*n^5-125*n^6-30*n^7+40*n^8-11*n^9+n^10) == 0, a[2]==12}, a[n], {n,2,20}] (* Georg Fischer, Feb 18 2022 *)

Formula

Empirical g.f.: -4*x^2*(1+x)*(3 + 42*x + 1522*x^2 + 18686*x^3 + 42654*x^4 + 18686*x^5 + 1522*x^6 + 42*x^7 + 3*x^8)/(-1+x)^13. - Vaclav Kotesovec, Nov 30 2012

A159367 Number of n X n arrays of squares of integers summing to 7.

Original entry on oeis.org

4, 540, 18720, 531300, 8583300, 86748088, 623757696, 3483871560, 16023245700, 63174296020, 219752181792, 688950636972, 1978607887620, 5271705817200, 13162584962560, 31050835145616, 69671782148868, 149524133455500
Offset: 2

Views

Author

R. H. Hardin Apr 11 2009

Keywords

Comments

All such sequences have holonomic recurrences (cf. comment in A159359). - Georg Fischer, Feb 17 2022

Formula

Empirical: a(n)=n^2*(n-1)*(n+1)*(n^2-2)*(n^2-3)*(n^6-15*n^4+74*n^2+720)/5040. [From R. J. Mathar, Aug 11 2009]

A159371 Number of n X n arrays of squares of integers summing to 8.

Original entry on oeis.org

6, 675, 34830, 1347525, 32145930, 460513662, 4464289944, 32292364770, 186464336850, 900743450145, 3764484413118, 13954005203463, 46750424936670, 143665627355100, 409707743053920, 1094582930018724, 2760817157366382
Offset: 2

Views

Author

R. H. Hardin Apr 11 2009

Keywords

Comments

All such sequences have holonomic recurrences (cf. comment in A159359). - Georg Fischer, Feb 17 2022

Formula

Empirical: n^2*(n^2-1)*(n^12-27*n^10+295*n^8+15*n^6-10016*n^4+35652*^2-15120)/40320. [From R. J. Mathar, Aug 11 2009]

A159375 Number of n X n arrays of squares of integers summing to 9.

Original entry on oeis.org

16, 766, 61184, 3112500, 105851488, 2138413851, 27990555776, 262835331687, 1909384608000, 11319915386120, 56916060868096, 249702337698346, 976762617522160, 3464394870851125, 11290721919375872, 34177386571594701
Offset: 2

Views

Author

R. H. Hardin, Apr 11 2009

Keywords

Comments

All such sequences have holonomic recurrences (cf. comment in A159359). - Georg Fischer, Feb 17 2022

Formula

Empirical g.f.: -x-(1+x)*x*(1 - 4*x + 637*x^2 + 47760*x^3 + 2021602*x^4 + 54462984*x^5 + 548532899*x^6 + 2125377516*x^7 + 3360726010*x^8 + 2125377516*x^9 + 548532899*x^10 + 54462984*x^11 + 2021602*x^12 + 47760*x^13 + 637*x^14 - 4*x^15 + x^16)/(-1+x)^19. - Vaclav Kotesovec, Nov 30 2012
a(n) = binomial(n^2,1) + multinomial(n^2,1,2,(n^2-3)) + multinomial(n^2,1,5,n^2-6) + binomial(n^2,9) = (1/362880)*n^18 - (1/10080)*n^16 + (13/8640)*n^14 - (1/240)*n^12 - (1091/17280)*n^10 + (251/480)*n^8 - (95209/90720)*n^6 + (1213/2520)*n^4 + (10/9)*n^2 corresponding to the ways of obtaining 9 as a sum of n^2 squares: 9 + (n^2-1)*0, 2*4 + 1 + (n^2-3)*0, 4 + 5*1 + (n^2 - 6)*0, and 9*1 + (n^2 - 9)*0. - Robert Israel, Dec 18 2023

A159383 Number of n X n arrays of squares of integers summing to 11.

Original entry on oeis.org

12, 1584, 152688, 13648200, 846679356, 32762864904, 779081474880, 12381739674840, 143119261158300, 1283949949655736, 9379210663695600, 57819891720389760, 309087991429311276, 1463326913027026800
Offset: 2

Views

Author

R. H. Hardin Apr 11 2009

Keywords

Comments

All such sequences have holonomic recurrences (cf. comment in A159359). - Georg Fischer, Feb 17 2022

Formula

Empirical G.f.: -12*x^2*(1+x)*(1 + 108*x + 9833*x^2 + 866490*x^3 + 46525328*x^4 + 1327261872*x^5 + 16745609840*x^6 + 97277340534*x^7 + 275802359702*x^8 + 390874554984*x^9 + 275802359702*x^10 + 97277340534*x^11 + 16745609840*x^12 + 1327261872*x^13 + 46525328*x^14 + 866490*x^15 + 9833*x^16 + 108*x^17 + x^18)/(-1+x)^23. - Vaclav Kotesovec, Nov 30 2012

A159386 Number of n X n arrays of squares of integers summing to 12.

Original entry on oeis.org

8, 1857, 232740, 26296475, 2128426860, 110964458710, 3533207162352, 73077185537370, 1067559034014900, 11805270721428855, 104131103837358468, 762072014041423813, 4768129728862470880, 26106675760931007900, 127411116947126838720, 562536757736562399012
Offset: 2

Views

Author

R. H. Hardin, Apr 11 2009

Keywords

Comments

All such sequences have holonomic recurrences (cf. comment in A159359). - Georg Fischer, Feb 17 2022

Formula

Empirical G.f.: -x^2*(1+x)*(8 + 1649*x + 187066*x^2 + 20829609*x^3 + 1515837476*x^4 + 63614656244*x^5 + 1276374119248*x^6 + 12185198155972*x^7 + 58755893406228*x^8 + 149482468806702*x^9 + 204117353324396*x^10 + 149482468806702*x^11 + 58755893406228*x^12 + 12185198155972*x^13 + 1276374119248*x^14 + 63614656244*x^15 + 1515837476*x^16 + 20829609*x^17 + 187066*x^18 + 1649*x^19 + 8*x^20)/(-1+x)^25. - Vaclav Kotesovec, Nov 30 2012

A159389 Number of n X n arrays of squares of integers summing to 13.

Original entry on oeis.org

16, 1962, 350240, 48299450, 5030081280, 346589305664, 14664677168512, 394240010602320, 7283982145272800, 99396267512446410, 1059813625787601696, 9216296747192215226, 67545604711093622960, 427985285624487838800
Offset: 2

Views

Author

R. H. Hardin Apr 11 2009

Keywords

Comments

All such sequences have holonomic recurrences (cf. comment in A159359). - Georg Fischer, Feb 17 2022

Formula

Empirical G.f.: -2*x^2*(1+x)*(8 + 757*x + 150684*x^2 + 19591732*x^3 + 1902144428*x^4 + 111467309309*x^5 + 3357053495448*x^6 + 49669712820552*x^7 + 379085540031904*x^8 + 1572597871783886*x^9 + 3663335172842872*x^10 + 4854870652776840*x^11 + 3663335172842872*x^12 + 1572597871783886*x^13 + 379085540031904*x^14 + 49669712820552*x^15 + 3357053495448*x^16 + 111467309309*x^17 + 1902144428*x^18 + 19591732*x^19 + 150684*x^20 + 757*x^21 + 8*x^22)/(-1+x)^27. - Vaclav Kotesovec, Nov 30 2012

A159392 Number of n X n arrays of squares of integers summing to 14.

Original entry on oeis.org

24, 2520, 503616, 85380600, 11267944488, 1008474419568, 56159712530496, 1957557182156496, 45750088895603400, 771069955155892920, 9947917198190930112, 102886031599392144792, 883927680158797591800
Offset: 2

Views

Author

R. H. Hardin Apr 11 2009

Keywords

Comments

All such sequences have holonomic recurrences (cf. comment in A159359). - Georg Fischer, Feb 17 2022

Formula

Empirical G.f.: -24*x^2*(1+x)*(1 + 75*x + 18270*x^2 + 2969695*x^3 + 371519352*x^4 + 29402869921*x^5 + 1270115156506*x^6 + 27861646979401*x^7 + 320243742405791*x^8 + 2035253623371844*x^9 + 7457245326412232*x^10 + 16147921368666408*x^11 + 20880695398301008*x^12 + 16147921368666408*x^13 + 7457245326412232*x^14 + 2035253623371844*x^15 + 320243742405791*x^16 + 27861646979401*x^17 + 1270115156506*x^18 + 29402869921*x^19 + 371519352*x^20 + 2969695*x^21 + 18270*x^22 + 75*x^23 + x^24)/(-1+x)^29. - Vaclav Kotesovec, Nov 30 2012

A159397 Number of n X n arrays of squares of integers summing to 16.

Original entry on oeis.org

5, 3987, 960197, 243293450, 49328395731, 7138321890616, 666179701320556, 38558976229027926, 1439078695947198175, 37055970405356439240, 701629710103618241661, 10289171538319337074541, 121736692023067368010505
Offset: 2

Views

Author

R. H. Hardin Apr 11 2009

Keywords

Comments

All such sequences have holonomic recurrences (cf. comment in A159359). - Georg Fischer, Feb 17 2022

Formula

Empirical G.f.: -x - x*(1+x)*(1 -29*x + 4379*x^2 + 821431*x^3 + 212904294*x^4 + 41572005795*x^5 + 5592296001394*x^6 + 449779113080002*x^7 + 19634897290562828*x^8 + 461755603301498981*x^9 + 6109738979241997636*x^10 + 47748225885297619913*x^11 + 229005554540179223339*x^12 + 691824816742731558421*x^13 + 1336833271423720702097*x^14 + 1664132445913632199036*x^15 + 1336833271423720702097*x^16 + 691824816742731558421*x^17 + 229005554540179223339*x^18 + 47748225885297619913*x^19 + 6109738979241997636*x^20 + 461755603301498981*x^21 + 19634897290562828*x^22 + 449779113080002*x^23 + 5592296001394*x^24 + 41572005795*x^25 + 212904294*x^26 + 821431*x^27 + 4379*x^28 - 29*x^29 + x^30)/(-1+x)^33. - Vaclav Kotesovec, Nov 30 2012
Showing 1-10 of 18 results. Next