cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 87 results. Next

A296612 Square array read by antidiagonals upwards: T(n,k) equals k times the number of compositions (ordered partitions) of n, with n >= 0 and k >= 1.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 4, 4, 3, 4, 8, 8, 6, 4, 5, 16, 16, 12, 8, 5, 6, 32, 32, 24, 16, 10, 6, 7, 64, 64, 48, 32, 20, 12, 7, 8, 128, 128, 96, 64, 40, 24, 14, 8, 9, 256, 256, 192, 128, 80, 48, 28, 16, 9, 10, 512, 512, 384, 256, 160, 96, 56, 32, 18, 10, 11, 1024, 1024, 768, 512, 320, 192, 112, 64, 36, 20, 11, 12
Offset: 0

Views

Author

Omar E. Pol, Jan 04 2018

Keywords

Comments

Also, at least for the first five columns, column k gives the row lengths of the irregular triangles of the first differences of the total number of elements in the structure of some cellular automata. Indeed, the study of the structure and the behavior of the toothpick cellular automaton on triangular grid (A296510), and other C.A. of the same family, reveals that some cellular automata that have recurrent periods can be represented by irregular triangles (of first differences) whose row lengths are the terms of A011782 multiplied by k (instead of powers of 2), where k is the length of an internal cycle. This internal cycle is called here "word" of a cellular automaton (see examples).

Examples

			The corner of the square array begins:
    1,   2,   3,    4,    5,    6,    7,    8,    9,   10, ...
    1,   2,   3,    4,    5,    6,    7,    8,    9,   10, ...
    2,   4,   6,    8,   10,   12,   14,   16,   18,   20, ...
    4,   8,  12,   16,   20,   24,   28,   32,   36,   40, ...
    8,  16,  24,   32,   40,   48,   56,   64,   72,   80, ...
   16,  32,  48,   64,   80,   96,  112,  128,  144,  160, ...
   32,  64,  96,  128,  160,  192,  224,  256,  288,  320, ...
   64, 128, 192,  256,  320,  384,  448,  512,  576,  640, ...
  128, 256, 384,  512,  640,  768,  896, 1024, 1152, 1280, ...
  256, 512, 768, 1024, 1280, 1536, 1792, 2048, 2304, 2560, ...
...
For k = 1 consider A160120, the Y-toothpick cellular automaton, which has word "a", so the structure of the irregular triangle of the first differences (A160161) is as follows:
a;
a;
a,a;
a,a,a,a;
a,a,a,a,a,a,a,a;
...
An associated sound to the animation of this cellular automaton could be (tick), (tick), (tick), ...
The row lengths of the above triangle are the terms of A011782, equaling the column 1 of the square array: 1, 1, 2, 4, 8, ...
.
For k = 2 consider A139250, the normal toothpick C.A. which has word "ab", so the structure of the irregular triangle of the first differences (A139251) is as follows:
a,b;
a,b;
a,b,a,b;
a,b,a,b,a,b,a,b;
a,b,a,b,a,b,a,b,a,b,a,b,a,b,a,b;
...
An associated sound to the animation could be (tick, tock), (tick, tock), ..., the same as the ticking clock sound.
The row lengths of the above triangle are the terms of A011782 multiplied by 2, equaling the column 2 of the square array: 2, 2, 4, 8, 16, ...
.
For k = 3 consider A296510, the toothpicks C.A. on triangular grid, which has word "abc", so the structure of the irregular triangle of the first differences (A296511) is as follows:
a,b,c;
a,b,c;
a,b,c,a,b,c;
a,b,c,a,b,c,a,b,c,a,b,c;
a,b,c,a,b,c,a,b,c,a,b,c,a,b,c,a,b,c,a,b,c,a,b,c;
...
An associated sound to the animation could be (tick, tock, tack), (tick, tock, tack), ...
The row lengths of the above triangle are the terms of A011782 multiplied by 3, equaling the column 3 of the square array: 3, 3, 6, 12, 24, ...
.
For k = 4 consider A299476, the toothpick C.A. on triangular grid with word "abcb", so the structure of the irregular triangle of the first differences (A299477) is as follows:
a,b,c,b;
a,b,c,b;
a,b,c,b,a,b,c,b;
a,b,c,b,a,b,c,b,a,b,c,b,a,b,c,b;
a,b,c,b,a,b,c,b,a,b,c,b,a,b,c,b,a,b,c,b,a,b,c,b,a,b,c,b,a,b,c,b;
...
An associated sound to the animation could be (tick, tock, tack, tock), (tick, tock, tack, tock), ...
The row lengths of the above triangle are the terms of A011782 multiplied by 4, equaling the column 4 of the square array: 4, 4, 8, 16, 32, ...
.
For k = 5 consider A299478, the toothpick C.A. on triangular grid with word "abcbc", so the structure of the irregular triangle of the first differences (A299479) is as follows:
a,b,c,b,c;
a,b,c,b,c;
a,b,c,b,c,a,b,c,b,c;
a,b,c,b,c,a,b,c,b,c,a,b,c,b,c,a,b,c,b,c;
a,b,c,b,c,a,b,c,b,c,a,b,c,b,c,a,b,c,b,c,a,b,c,b,c,a,b,c,b,c,a,b,c,b,c,a,b,c,b,c;
...
An associated sound to the animation could be (tick, tock, tack, tock, tack), (tick, tock, tack, tock, tack), ...
The row lengths of the above triangle are the terms of A011782 multiplied by 5, equaling the column 5 of the square array: 5, 5, 10, 20, 40, ...
		

Crossrefs

Formula

T(n,k) = k*A011782(n), with n >= 0 and k >= 1.

A160160 Toothpick sequence in the three-dimensional grid.

Original entry on oeis.org

0, 1, 3, 7, 15, 23, 31, 39, 55, 87, 143, 175, 191, 199, 215, 247, 303, 359, 423, 503, 655, 887, 1239, 1383, 1431, 1463, 1487, 1527, 1583, 1639, 1703, 1783, 1935, 2167, 2519, 2735, 2903, 3079, 3351, 3711, 4207, 4655, 5191, 5855, 7023, 8511, 10511, 11279, 11583, 11919, 12183, 12375, 12487, 12607
Offset: 0

Views

Author

Omar E. Pol, May 03 2009, May 06 2009

Keywords

Comments

Similar to A139250, except the toothpicks are placed in three dimensions, not two. The first toothpick is in the z direction. Thereafter, new toothpicks are placed at free ends, as in A139250, perpendicular to the existing toothpick, but choosing in rotation the x-direction, y-direction, z-direction, x-direction, etc.
The graph of this sequence has a nice self-similar shape: it looks the when the x-range is multiplied by 2, e.g. a(0..125) vs a(0..250) or a(0..500). - M. F. Hasler, Dec 12 2018

Crossrefs

Programs

  • PARI
    A160160_vec(n,o=1)={local(s(U)=[Vecsmall(Vec(V)+U)|V<-E], E=[Vecsmall([1,1,1])], J=[], M,A,B,U); [if(i>4, M+=8*#E=setminus(setunion(A=s(U=matid(3)[i%3+1,]), B=select(vecmin,s(-U))), J=setunion(setunion(setintersect(A,B),E),J)),M=1<M. F. Hasler, Dec 11 2018
    
  • PARI
    A160160(n)=sum(k=1,n,A160161[k]) \\ if A160161=A160161_vec(n) has already been computed. - M. F. Hasler, Dec 12 2018

Formula

Partial sums of A160161: a(n) = Sum_{1 <= k <= n} A160161(k) for all n >= 0. - M. F. Hasler, Dec 12 2018

Extensions

Edited by N. J. A. Sloane, Jan 02 2009
Extended to a(76) with C++ program and illustrations by R. J. Mathar, Jan 09 2010
Extended to 500 terms by M. F. Hasler, Dec 12 2018

A172310 L-toothpick sequence (see Comment lines for definition).

Original entry on oeis.org

0, 1, 3, 7, 13, 21, 33, 47, 61, 79, 97, 117, 141, 165, 203, 237, 279, 313, 339, 367, 399, 437, 489, 543, 607, 665, 733, 793, 853, 903, 969, 1039, 1109, 1183, 1233, 1285, 1345, 1399, 1463, 1529, 1613, 1701, 1817, 1923, 2055, 2155, 2291, 2417, 2557, 2663, 2781, 2881, 3003, 3109, 3247, 3361, 3499, 3631, 3783, 3939
Offset: 0

Views

Author

Omar E. Pol, Jan 31 2010

Keywords

Comments

We define an "L-toothpick" to consist of two line segments forming an "L".
There are two size for L-toothpicks: Small and large. Each component of small L-toothpick has length 1. Each component of large L- toothpick has length sqrt(2).
The rule for the n-th stage:
If n is odd then we add the large L-toothpicks to the structure, otherwise we add the small L-toothpicks to the structure.
Note that, on the infinite square grid, every large L-toothpick is placed with angle = 45 degrees and every small L-toothpick is placed with angle = 90 degrees.
The special rule: L-toothpicks are not added if this would lead to overlap with another L-toothpick branch in the same generation.
We start at stage 0 with no L-toothpicks.
At stage 1 we place a large L-toothpick in the horizontal direction, as a "V", anywhere in the plane (Note that there are two exposed endpoints).
At stage 2 we place two small L-toothpicks.
At stage 3 we place four large L-toothpicks.
At stage 4 we place six small L-toothpicks.
And so on...
The sequence gives the number of L-toothpick after n stages. A172311 (the first differences) gives the number of L-toothpicks added at the n-th stage.
For more information see A139250, the toothpick sequence.
In calculating the extension, the "special rule" was strengthened to prohibit intersections as well as overlappings. [From John W. Layman, Feb 04 2010]
Note that the endpoints of the L-toothpicks of the new generation can touch the L-toothpìcks of old generations but the crosses and overlaps are prohibited. - Omar E. Pol, Mar 26 2016
The L-toothpick cellular automaton has an unusual property: the growths in its four wide wedges [North, East, South and West] have a recurrent behavior related to powers of 2, as we can find in other cellular automata (i.e., A194270). On the other hand, in its four narrow wedges [NE, SE, SW, NW] the behavior seems to be chaotic, without any recurrence, similar to the behavior of the snowflake cellular automaton of A161330. The remarkable fact is that with the same rules, different behaviors are produced. (See Applegate's movie version in the Links section.) - Omar E. Pol, Nov 06 2018

Crossrefs

For a similar version see A172304.
Cf. A161330 (snowflake).

Extensions

Terms a(9)-a(41) from John W. Layman, Feb 04 2010
Corrected by David Applegate and Omar E. Pol; more terms beyond a(22) from David Applegate, Mar 26 2016

A267700 "Tree" sequence in a 90-degree sector of the cellular automaton of A160720.

Original entry on oeis.org

0, 1, 2, 5, 6, 9, 12, 19, 20, 23, 26, 33, 36, 43, 50, 65, 66, 69, 72, 79, 82, 89, 96, 111, 114, 121, 128, 143, 150, 165, 180, 211, 212, 215, 218, 225, 228, 235, 242, 257, 260, 267, 274, 289, 296, 311, 326, 357, 360, 367, 374, 389, 396, 411, 426, 457, 464, 479, 494, 525, 540, 571, 602, 665, 666, 669, 672, 679, 682, 689
Offset: 0

Views

Author

Omar E. Pol, Jan 19 2016

Keywords

Comments

Conjecture: this is also the "tree" sequence in a 120-degree sector of the cellular automaton of A266532.
It appears that this is also the partial sums of A038573.
a(n) is also the total number of ON cells after n-th stage in the tree that arises from one of the four spokes in a 90-degree sector of the cellular automaton A160720 on the square grid.
Note that the structure of A160720 is also the "outward" version of the Ulam-Warburton cellular automaton of A147562.
It appears that A038573 gives the number of cells turned ON at n-th stage.
Conjecture: a(n) is also the total number of Y-toothpicks after n-th stage in the tree that arises from one of the three spokes in a 120-degree sector of the cellular automaton of A266532 on the triangular grid.
Note that the structure of A266532 is also the "outward" version of the Y-toothpick cellular automaton of A160120.
It appears that A038573 also gives the number of Y-toothpicks added at n-th stage.
Comment from N. J. A. Sloane, Jan 23 2016: All the above conjectures are true!
From Gus Wiseman, Mar 31 2019: (Start)
a(n) is also the number of nondecreasing binary-containment pairs of positive integers up to n. A pair of positive integers is a binary containment if the positions of 1's in the reversed binary expansion of the first are a subset of the positions of 1's in the reversed binary expansion of the second. For example, the a(1) = 1 through a(6) = 12 pairs are:
(1,1) (1,1) (1,1) (1,1) (1,1) (1,1)
(2,2) (1,3) (1,3) (1,3) (1,3)
(2,2) (2,2) (1,5) (1,5)
(2,3) (2,3) (2,2) (2,2)
(3,3) (3,3) (2,3) (2,3)
(4,4) (3,3) (2,6)
(4,4) (3,3)
(4,5) (4,4)
(5,5) (4,5)
(4,6)
(5,5)
(6,6)
(End)

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[2^DigitCount[n,2,1]-1,{n,0,30}]] (* based on conjecture confirmed by Sloane, Gus Wiseman, Mar 31 2019 *)

Formula

a(n) = (A160720(n+1) - 1)/4.
Conjecture 1: a(n) = (A266532(n+1) - 1)/3.
Conjecture 2: a(n) = A160720(n+1) - A266532(n+1).
All of the above conjectures are true. - N. J. A. Sloane, Jan 23 2016
(Conjecture) a(n) = A267610(n) + n. - Gus Wiseman, Mar 31 2019

A161328 E-toothpick sequence (see Comments lines for definition).

Original entry on oeis.org

0, 1, 4, 9, 16, 29, 40, 57, 72, 93, 116, 141, 168, 201, 228, 253, 268, 293, 328, 369, 424, 477, 536, 597, 656, 721, 784, 841, 888, 925, 972, 1037, 1108, 1205, 1300, 1405, 1500, 1589, 1672, 1753, 1840, 1933, 2012, 2085, 2164, 2253, 2360, 2473, 2592, 2705, 2820
Offset: 0

Views

Author

Omar E. Pol, Jun 07 2009

Keywords

Comments

An E-toothpick is formed by three toothpicks, as an trident. The E-toothpick has a midpoint and three exposed endpoints such that the distance between the endpoint of the central toothpick and the endpoints of the other toothpicks is equal to 1.
On the infinite triangular grid, we start at round 0 with no E-toothpicks.
At round 1 we place an E-toothpick anywhere in the plane.
At round 2 we add three more E-toothpicks.
At round 3 we add five more E-toothpicks.
And so on... (see illustrations).
The rule for adding new E-toothpicks is as follows. Each E has three ends, which initially are free. If the ends of two E's meet, those ends are no longer free. To go from round n to round n+1, we add an E-toothpick at each free end (extending that end in the direction it is pointing), subject to the condition that no end of any new E can touch any end of an existing E from round n or earlier. (Two new E's are allowed to touch.)
The sequence gives the number of E-toothpicks in the structure after n rounds. A161329 (the first differences) gives the number added at the n-th round.
Note that, on the infinite triangular grid, a E-toothpick can be represented as a polyedge with three components. In this case, at n-th round, the structure is a polyedge with 3*a(n) components. See the entry A139250 for more information about the growth of the toothpicks.
See also the snowflake sequence A161330.

Crossrefs

Formula

For n >= 3, a(n) = 4 + Sum_{k=3..n} 2*Sum_{x=1..3} A220498(k-x) + 2^((k mod 2) + 1) - 7. - Christopher Hohl, Feb 24 2019

Extensions

a(8) corrected, more terms appended by R. J. Mathar, Jan 21 2010
Extensive edits by Omar E. Pol, May 14 2012
I have copied the rule for adding new E-toothpicks (described by N. J. A. Sloane) from A161330. - Omar E. Pol, Dec 07 2012

A160172 T-toothpick sequence (see Comments lines for definition).

Original entry on oeis.org

0, 1, 4, 9, 18, 27, 36, 49, 74, 95, 104, 117, 142, 167, 192, 229, 302, 359, 368, 381, 406, 431, 456, 493, 566, 627, 652, 689, 762, 835, 908, 1017, 1234, 1399, 1408, 1421, 1446, 1471, 1496, 1533, 1606, 1667, 1692, 1729, 1802, 1875, 1948, 2057, 2274, 2443, 2468
Offset: 0

Views

Author

Omar E. Pol, Jun 01 2009

Keywords

Comments

A T-toothpick is formed from three toothpicks of equal length, in the shape of a T. There are three endpoints. We call the middle of the top toothpick the pivot point.
We start at round 0 with no T-toothpicks.
At round 1 we place a T-toothpick anywhere in the plane.
At round 2 we place three other T-toothpicks.
And so on...
The rule for adding a new T-toothpick is the following. A new T-toothpick is added at any exposed endpoint, with the pivot point touching the endpoint and so that the crossbar of the new toothpick is perpendicular to the exposed end.
The sequence gives the number of T-toothpicks after n rounds. A160173 (the first differences) gives the number added at the n-th round.
See the entry A139250 for more information about the toothpick process and the toothpick propagation.
On the infinite square grid a T-toothpick can be represented as a square polyedge with three components from a central point: two consecutive components on the same straight-line and a centered orthogonal component.
If the T-toothpick has three components then at the n-th round the structure is a polyedge with 3*a(n) components.
From Omar E. Pol, Mar 26 2011: (Start)
For formula and more information see the Applegate-Pol-Sloane paper, chapter 11, "T-shaped toothpicks". See also A160173.
Also, this sequence can be illustrated using another structure in which every T-toothpick is replaced by an isosceles right triangle. (End)
The structure is very distinct but the graph is similar to the graphs from the following sequences: A147562, A160164, A162795, A169707, A187220, A255366, A256260, at least for the known terms from Data section. - Omar E. Pol, Nov 24 2015
Shares with A255366 some terms with the same index, for example the element a(43) = 1729, the Hardy-Ramanujan number. - Omar E. Pol, Nov 25 2015

Crossrefs

Programs

Formula

a(n) = 2*A151920(n) + 2*A151920(n-1) + n + 1. - Charlie Neder, Feb 07 2019

Extensions

Edited and extended by N. J. A. Sloane, Jan 01 2010

A194440 Number of toothpicks and D-toothpicks after n-th stage in the D-toothpick "wide" triangle of the second kind.

Original entry on oeis.org

0, 1, 3, 7, 11, 15, 19, 27, 35, 39, 43, 51, 63, 79, 87, 103, 119, 123, 127, 135, 147, 163, 179, 203, 229, 253, 265, 285, 313, 353, 373, 405, 437, 441, 445, 453, 465, 481, 497, 521, 547, 571, 591, 623, 663, 727, 767, 815, 869, 909, 921, 941, 973, 1021
Offset: 0

Views

Author

Omar E. Pol, Aug 29 2011

Keywords

Comments

For the D-toothpick "narrow" triangle of the second kind see A194442.
The structure is essentially one of the wedges of several D-toothpick structures. For more information see A194270. The first differences (A194441) give the number of toothpicks or D-toothpicks added at n-th stage. [Omar E. Pol, Dec 29 2012]

Crossrefs

A182840 Toothpick sequence on hexagonal net.

Original entry on oeis.org

0, 1, 5, 13, 27, 43, 57, 81, 119, 151, 165, 189, 235, 299, 353, 409, 495, 559, 573, 597, 643, 707, 769, 849, 975, 1119, 1205, 1261, 1371, 1539, 1697, 1841, 2039, 2167, 2181, 2205, 2251, 2315, 2377, 2457, 2583, 2727, 2821, 2901, 3043, 3267, 3505, 3729, 4015
Offset: 0

Views

Author

Omar E. Pol, Dec 09 2010

Keywords

Comments

Rules:
- Each new toothpick must lie on the hexagonal net such that the toothpick endpoints coincide with two consecutive nodes.
- Each exposed endpoint of the toothpicks of the old generation must be touched by the endpoints of two toothpicks of new generation.
The sequence gives the number of toothpicks after n stages. A182841 (the first differences) gives the number added at the n-th stage.
The toothpick structure has polygons in which there are uncovered grid points, the same as A160120 and A161206. For more information see A139250.
Has a behavior similar to A151723, A182632. - Omar E. Pol, Feb 28 2013
From Omar E. Pol, Feb 17 2023: (Start)
Assume that every triangular cell has area 1.
It appears that the structure contains only three types of polygons:
- Regular hexagons of area 6.
- Concave decagons (or concave 10-gons) of area 12.
- Concave dodecagons (or concave 12-gons) of area 18.
There are infinitely many of these polygons.
The structure contains concentric hexagonal rings formed by hexagons and also contains concentric hexagonal rings formed by alternating decagons and dodecagons.
For an animation see the movie version in the Links section.
The animation shows the fractal-like behavior the same as in other members of the family of toothpick cellular automata.
The structure has internal growth.
For another version starting from a node see A182632.
For a version of the structure in the first quadrant but on the square grid see A182838. (End)

Examples

			We start at stage 0 with no toothpicks.
At stage 1 we place a toothpick anywhere in the plane (For example, in vertical position). There are two exposed endpoints, so a(1)=1.
At stage 2 we place 4 toothpicks. Two new toothpicks touching each exposed endpoint. So a(2)=1+4=5. There are 4 exposed endpoints.
At stage 3 we place 8 toothpicks. a(3)=5+8=13. The structure has 8 exposed endpoints.
At stage 4 we place 14 toothpicks (Not 16) because there are 4 endpoints that are touched by new 8 toothpicks but there are 4 endpoints that are touched by only 6 new toothpicks (not 8), so a(4)=13+14=27.
After 4 stages the toothpick structure has 4 hexagons and 8 exposed endpoints.
		

Crossrefs

Extensions

More terms from Olaf Voß, Dec 24 2010
Wiki link added by Olaf Voß, Jan 14 2011

A194442 Number of toothpicks and D-toothpicks after n-th stage in the D-toothpick "narrow" triangle of the second kind.

Original entry on oeis.org

0, 1, 3, 7, 11, 15, 19, 26, 34, 38, 42, 50, 62, 70, 78, 91, 107, 111, 115, 123, 135, 151, 167, 187, 211, 223, 231, 247, 275, 291, 307, 332, 364, 368, 372, 380, 392, 408, 424, 446, 478, 504, 524, 548, 588, 620, 660, 693, 741, 761, 769, 785, 813, 853, 897, 947
Offset: 0

Views

Author

Omar E. Pol, Aug 29 2011

Keywords

Comments

If n = 2^k, k >= 1, then the structure looks like an isosceles triangle. For the D-toothpick "wide" triangle of the second kind see A194440.
The structure is essentially one of the wedges of several D-toothpick structures. For more information see A194270. The first differences (A194443) give the number of toothpicks or D-toothpicks added at n-th stage. - Omar E. Pol, Mar 28 2013

Crossrefs

A160720 Number of "ON" cells at n-th stage in 2-dimensional cellular automaton (see Comments for precise definition).

Original entry on oeis.org

0, 1, 5, 9, 21, 25, 37, 49, 77, 81, 93, 105, 133, 145, 173, 201, 261, 265, 277, 289, 317, 329, 357, 385, 445, 457, 485, 513, 573, 601, 661, 721, 845, 849, 861, 873, 901, 913, 941, 969, 1029, 1041, 1069, 1097, 1157, 1185, 1245, 1305, 1429, 1441, 1469, 1497
Offset: 0

Views

Author

Omar E. Pol, May 25 2009

Keywords

Comments

We work on the vertices of the square grid Z^2, and define the neighbors of a cell to be the four closest cells along the diagonals.
We start at stage 0 with all cells in OFF state.
At stage 1, we turn ON a single cell at the origin.
Once a cell is ON it stays ON.
At each subsequent stage, a cell in turned ON if exactly one of its neighboring cells that are no further from the origin is ON.
The "no further from the origin" condition matters for the first time at stage 8, when only A160721(8) = 28 cells are turned ON, and a(8) = 77. In contrast, A147562(8) = 85, A147582(8) = 36.
This CA also arises as the cross-section in the (X,Y)-plane of the CA in A151776.
In other words, a cell is turned ON if exactly one of its vertices touches an exposed vertex of a ON cell of the previous generation. A special rule for this sequence is that every ON cell has only one vertex that should be considered not exposed: its nearest vertex to the center of the structure.
Analog to the "outward" version (A266532) of the Y-toothpick cellular automaton of A160120 on the triangular grid, but here we have ON cells on the square grid. See also the formula section. - Omar E. Pol, Jan 19 2016
This cellular automaton can be interpreted as the outward version of the Ulam-Warburton two-dimensional cellular automaton (see A147562). - Omar E. Pol, Jun 22 2017

Examples

			If we label the generations of cells turned ON by consecutive numbers we get the cell pattern shown below:
9...............9
.8.8.8.8.8.8.8.8.
..7...7...7...7..
.8.6.6.....6.6.8.
....5.......5....
.8.6.4.4.4.4.6.8.
..7...3...3...7..
.8...4.2.2.4...8.
........1........
.8...4.2.2.4...8.
..7...3...3...7..
.8.6.4.4.4.4.6.8.
....5.......5....
.8.6.6.....6.6.8.
..7...7...7...7..
.8.8.8.8.8.8.8.8.
9...............9
		

Crossrefs

Programs

  • Maple
    cellOn := [[0,0]] : bbox := [0,0,0,0]: # llx, lly, urx, ury isOn := proc(x,y,L) local i ; for i in L do if op(1,i) = x and op(2,i) = y then RETURN(true) ; fi; od: RETURN(false) ; end: bb := proc(L) local mamin,i; mamin := [0,0,0,0] ; for i in L do mamin := subsop(1=min(op(1,mamin),op(1,i)),mamin) ; mamin := subsop(2=min(op(2,mamin),op(2,i)),mamin) ; mamin := subsop(3=max(op(1,mamin),op(1,i)),mamin) ; mamin := subsop(4=max(op(2,mamin),op(2,i)),mamin) ; od: mamin ; end: for gen from 2 to 80 do nGen := [] ; print(nops(cellOn)) ; for x from op(1,bbox)-1 to op(3,bbox)+1 do for y from op(2,bbox)-1 to op(4,bbox)+1 do # not yet in list? if not isOn(x,y,cellOn) then
    # loop over 4 neighbors of (x,y) non := 0 ; for dx from -1 to 1 by 2 do for dy from -1 to 1 by 2 do # test of a neighbor nearer to origin if x^2+y^2 >= (x+dx)^2+(y+dy)^2 then if isOn(x+dx,y+dy,cellOn) then non := non+1 ; fi; fi; od: od: # exactly one neighbor on: add to nGen if non = 1 then nGen := [op(nGen), [x,y]] ; fi; fi; od: od: # merge old and new generation cellOn := [op(cellOn),op(nGen)] ; bbox := bb(cellOn) ; od: # R. J. Mathar, Jul 14 2009
  • Mathematica
    A160720[0]=0; A160720[n_]:=Total[With[{m = n - 1}, BitOr @@ (Function[pos, CellularAutomaton[{FromDigits[Boole[#[[2, 2]] == 1 || Count[Flatten[#], 1] == 1 && Count[Extract[#, pos], 1] == 1] & /@ Tuples[{1, 0}, {3, 3}], 2], 2, {1, 1}}, {{{1}}, 0}, {{{m}}, {-m, m}, {-m, m}}]] /@ Partition[{{-1, -1}, {-1, 1}, {1, 1}, {1, -1}}, 2, 1, 1])], 2] (* JungHwan Min, Jan 23 2016 *)
    A160720[0]=0; A160720[n_]:=Total[With[{m = n - 1}, BitOr @@ (CellularAutomaton[{#, 2, {1, 1}}, {{{1}}, 0}, {{{m}}, {-m, m}, {-m, m}}] & /@ {13407603346151304507647333602124270744930157291580986197148043437687863763597662002711256755796972443613438635551055889478487182262900810351549134401372178, 13407603346151304507647333602124270744930157291580986197148043437687863763597777794800494071992396014598447323458909159463152822826940267935557047531012112, 13407603346151304507647333602124270744930157291580986197148043437687863763597777794800494071992396014598447323458909159463152822826940286382301121240563712, 13407603346151304507647333602124270744930157291580986197148043437687863763597662002711256755796972443613438635551055889478487182262900828798293208110923778})], 2] (* JungHwan Min, Jan 23 2016 *)
    A160720[0]=0; A160720[n_]:=Total[With[{m = n - 1}, BitOr @@ (CellularAutomaton[{46, {2, ReplacePart[ArrayPad[{{1}}, 1], # -> 2]}, {1, 1}}, {{{1}}, 0}, {{{m}}, All, All}] & /@ Partition[{{-1, -1}, {-1, 1}, {1, 1}, {1, -1}}, 2, 1, 1])], 2] (* JungHwan Min, Jan 24 2016 *)

Formula

Conjecture: a(n) = 1 + 4*(A266532(n) - 1)/3, n >= 1. - Omar E. Pol, Jan 19 2016. This formula is correct! - N. J. A. Sloane, Jan 23 2016
a(n) = 1 + 4*A267700(n-1) = 1 + 2*(A159912(n) - n), n >= 1. - Omar E. Pol, Jan 24 2016

Extensions

Edited by N. J. A. Sloane, Jun 26 2009
More terms from David Applegate, Jul 03 2009
Previous Showing 21-30 of 87 results. Next