cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A356372 a(n) = Sum_{k=1..n} binomial(2*n, k) * A000005(k).

Original entry on oeis.org

2, 16, 76, 386, 1474, 7349, 26807, 121964, 487068, 2105087, 7486505, 37278746, 133488216, 550615531, 2263230587, 9856735046, 35168418266, 160420872009, 573578559659, 2582163925152, 10333237435638, 41122278086361, 146621866522577, 712999981650663, 2702556741014621
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 04 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*n, k]*DivisorSigma[0, k], {k, 1, n}], {n, 1, 30}]
  • PARI
    a(n) = sum(k=1, n, binomial(2*n, k) * numdiv(k)); \\ Michel Marcus, Aug 05 2022

Formula

a(n) ~ 2^(2*n-1) * (log(n) + 2*gamma), where gamma is the Euler-Mascheroni constant A001620.

A356373 a(n) = Sum_{k=1..n} binomial(2*k, k) * A000005(k).

Original entry on oeis.org

2, 14, 54, 264, 768, 4464, 11328, 62808, 208668, 947692, 2358556, 18583492, 39384692, 199851092, 820321172, 3825723122, 8492935562, 62943747362, 133634274962, 960713447882, 3113744945642, 11530140800522, 27997002255722, 285977831720522, 665209651033778, 2648883782826194
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 04 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*k, k]*DivisorSigma[0, k], {k, 1, n}], {n, 1, 30}]
  • PARI
    a(n) = sum(k=1, n, binomial(2*k, k) * numdiv(k)); \\ Michel Marcus, Aug 05 2022
Previous Showing 11-12 of 12 results.