cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A294980 a(n) is the total number of elements after n-th stage in a hybrid cellular automaton formed by Y-toothpicks and V-toothpicks (see Comments lines for precise definition).

Original entry on oeis.org

0, 1, 4, 10, 16, 22, 40, 58, 76, 82
Offset: 0

Views

Author

Omar E. Pol, Nov 12 2017

Keywords

Comments

We are on the infinite triangular grid.
At stage 0 there are no elements in the structure, so a(0) = 0.
If n is odd at n-th stage we add Y-toothpicks to the structure.
If n is a positive even number at n-th stage we add V-toothpicks to the structure.
a(n) is the total number of Y-toothpicks and V-toothpicks after n-th stages.
A294981(n) gives the number of elements added to the structure at n-th stage.
The "word" of this cellular automaton is "ab". For further information about the word of cellular automata see A296612. - Omar E. Pol, Mar 05 2019

Crossrefs

Cf. A139250, A160120 (Y-toothpicks), A161206 (V-toothpicks), A294981 (first differences), A296612.
For other hybrid cellular automata see: A289840, A290220, A294020, A294962.

A233970 Toothpick sequence on hexagonal net starting from the vertex of a 60-degree wedge (see Comments lines for precise definition).

Original entry on oeis.org

0, 1, 3, 5, 9, 11, 15, 21, 29, 31, 35, 41, 51, 61, 69, 83, 99, 101, 105, 111, 121, 131, 141, 159, 183, 205, 213, 227, 249, 275, 291, 321, 353, 355, 359, 365, 375, 385, 395, 413, 437, 459, 469, 487, 515, 553, 581, 627, 683, 737, 745, 759, 781, 807
Offset: 0

Views

Author

Omar E. Pol, Dec 18 2013

Keywords

Comments

Toothpicks are connected by their endpoints. The toothpicks placed in north direction are prohibited. The sequence gives the number of toothpicks after n-th stage in the structure. A233971 (the first differences) give the number of toothpicks added at n-th stage.
First differs from A169780 at a(24).
First differs from both A233764 and A233780 at a(25).

Crossrefs

A161412 V-toothpick sequence starting at the corner of an infinite square from which protrudes a half toothpick with an angle = Pi/6.

Original entry on oeis.org

0, 1, 2, 3, 5, 9, 12, 15, 19, 25, 29, 34, 39, 49, 58, 63
Offset: 0

Views

Author

Omar E. Pol, Jun 10 2009

Keywords

Comments

The sequence gives the number of V-toothpicks in the structure after n rounds. A161413 (the first differences) gives the number added at the n-th round.

Crossrefs

V-toothpick sequence: A161206.

A327330 "Concave pentagon" toothpick sequence (see Comments for precise definition).

Original entry on oeis.org

0, 1, 3, 7, 11, 15, 23, 33, 41, 45, 53, 63, 75, 89, 111, 133, 149, 153, 161, 171, 183, 197, 219, 241, 261, 275, 299, 327, 361, 403, 463, 511, 547, 551, 559, 569, 581, 595, 617, 639, 659, 673, 697, 725, 759, 801, 861, 909, 949, 967, 995, 1029, 1075, 1125, 1183, 1233, 1281, 1321, 1389, 1465, 1549, 1657
Offset: 0

Views

Author

Omar E. Pol, Sep 01 2019

Keywords

Comments

This arises from a hybrid cellular automaton on a triangular grid formed of I-toothpicks (A160164) and V-toothpicks (A161206).
The surprising fact is that after 2^k stages the structure looks like a concave pentagon, which is formed essentially by an equilateral triangle (E) surrounded by two quadrilaterals (Q1 and Q2), both with their largest sides in vertical position, as shown below:
.
* *
* * * *
* * * *
* * *
* Q1 * Q2 *
* * * *
* * * *
* * * *
* * * *
* * E * *
* * * *
* * * *
** **
* * * * * * * * * *
.
Note that for n >> 1 both quadrilaterals look like right triangles.
Every polygon has a slight resemblance to Sierpinsky's triangle, but here the structure is much more complex.
For the construction of the sequence the rules are as follows:
On the infinite triangular grid at stage 0 there are no toothpicks, so a(0) = 0.
At stage 1 we place an I-toothpick formed of two single toothpicks in vertical position, so a(1) = 1.
For the next n generation we have that:
If n is even then at every free end of the structure we add a V-toothpick, formed of two single toothpicks, with its central vertex directed upward, like a gable roof.
If n is odd then we add I-toothpicks in vertical position (see the example).
a(n) gives the total number of I-toothpicks and V-toothpicks in the structure after the n-th stage.
A327331 (the first differences) gives the number of elements added at the n-th stage.
2*a(n) gives the total number of single toothpicks of length 1 after the n-th stage.
The structure contains many kinds of polygonal regions, for example: triangles, trapezes, parallelograms, regular hexagons, concave hexagons, concave decagons, concave 12-gons, concave 18-gons, concave 20-gons, and other polygons.
The structure is almost identical to the structure of A327332, but a little larger at the upper edge.
The behavior seems to suggest that this sequence can be calculated with a formula, in the same way as A139250, but that is only a conjecture.
The "word" of this cellular automaton is "ab". For more information about the word of cellular automata see A296612.
For another version, very similar, starting with a V-toothpick, see A327332, which it appears that shares infinitely many terms with this sequence.

Examples

			Illustration of initial terms:
.
               |      /|\     |/|\|
               |       |      | | |
                      / \     |/ \|
                              |   |
n   :  0       1       2        3
a(n):  0       1       3        7
After three generations there are five I-toothpicks and two V-toothpicks in the structure, so a(3) = 5 + 2 = 7 (note that in total there are 2*a(3) = 2*7 = 14 single toothpicks of length 1).
		

Crossrefs

First differs from A231348 at a(11).
Cf. A047999, A139250 (normal toothpicks), A160164 (I-toothpicks), A160722 (a concave pentagon with triangular cells), A161206 (V-toothpicks), A296612, A323641, A323642, A327331 (first differences), A327332 (another version).
For other hybrid cellular automata, see A194270, A194700, A220500, A289840, A290220, A294020, A294962, A294980, A299770, A323646, A323650.

Formula

Conjecture: a(2^k) = A327332(2^k), k >= 0.

A327331 Number of elements added at n-th stage to the toothpick structure of A327330.

Original entry on oeis.org

1, 2, 4, 4, 4, 8, 10, 8, 4, 8, 10, 12, 14, 22, 22, 16, 4, 8, 10, 12, 14, 22, 22, 20, 14, 24, 28, 34, 42, 60, 48, 36, 4, 8, 10, 12, 14, 22, 22, 20, 14, 24, 28, 34, 42, 60, 48, 40, 18, 28, 34, 46, 50, 58, 50, 48, 40, 68, 76, 84, 108, 156, 100, 76, 4, 8, 10, 12, 14, 22, 22, 20, 14, 24, 28, 34, 42, 60, 48, 40
Offset: 1

Views

Author

Omar E. Pol, Sep 01 2019

Keywords

Comments

The word of this cellular automaton is "ab".
The structure of the irregular triangle is as shown below:
a,b;
a,b;
a,b,a,b;
a,b,a,b,a,b,a,b;
a,b,a,b,a,b,a,b,a,b,a,b,a,b,a,b;
...
Row lengths are the terms of A011782 multiplied by 2, also the column 2 of A296612.
Columns "a" contain numbers of I-toothpicks.
Columns "b" contain numbers of V-toothpicks.
For further information about the word of cellular automata see A296612.

Examples

			Triangle begins:
1,2;
4,4;
4,8,10,8;
4,8,10,12,14,22,22,16;
4,8,10,12,14,22,22,20,14,24,28,34,42,60,48,36;
4,8,10,12,14,22,22,20,14,24,28,34,42,60,48,40,18,28,34,46,50,58,50,48,40,68,...
		

Crossrefs

First differences of A327330.
Column 1 gives A123932.
First differs from A231348 at a(11).
For other hybrid cellular automata, see A194271, A194701, A220501, A289841, A290221, A294021, A294963, A294981, A299771, A323647, A323651.

A327332 "Concave pentagon" toothpick sequence, starting with a V-toothpick (see Comments for precise definition).

Original entry on oeis.org

0, 1, 3, 7, 11, 15, 21, 33, 41, 45, 51, 63, 75, 85, 101, 133, 149, 153, 159, 171, 183, 193, 209, 241, 261, 273, 291, 327, 363, 389, 431, 515, 547, 551, 557, 569, 581, 591, 607, 639, 659, 671, 689, 725, 761, 787, 829, 913, 953, 969, 993, 1041, 1085, 1109, 1149, 1229, 1277, 1309, 1357, 1453, 1549, 1613
Offset: 0

Views

Author

Omar E. Pol, Sep 01 2019

Keywords

Comments

Another version and very similar to A327330.
This arises from a hybrid cellular automaton on a triangular grid formed of V-toothpicks (A161206) and I-toothpicks (A160164).
After 2^k stages, the structure looks like a concave pentagon, which is formed essentially by an equilateral triangle (E) surrounded by two right triangles (R1 and R2) both with their hypotenuses in vertical position, as shown below:
.
* *
* * * *
* * * *
* * *
* R1 * * R2 *
* * * *
* * * *
* * * *
* * E * *
* * * *
* * * *
** **
* * * * * * * * * *
.
Every triangle has a slight resemblance to Sierpinsky's triangle, but here the structure is much more complex.
For the construction of the sequence the rules are as follows:
On the infinite triangular grid at stage 0 there are no toothpicks, so a(0) = 0.
At stage 1 we place an V-toothpick, formed of two single toothpicks, with its central vertice directed up, like a gable roof, so a(1) = 1.
For the next n generation we have that:
If n is even then at every free end of the structure we add a I-toothpick formed of two single toothpicks in vertical position.
If n is odd then at every free end of the structure we add a V-toothpick, formed of two single toothpicks, with its central vertex directed upward, like a gable roof (see the example).
a(n) gives the total number of V-toothpicks and I-toothpicks in the structure after the n-th stage.
A327333 (the first differences) gives the number of elements added at the n-th stage.
2*a(n) gives the total number of single toothpicks of length 1 after the n-th stage.
The structure contains many kinds of polygonal regions, for example: triangles, trapezes, parallelograms, regular hexagons, concave hexagons, concave decagons, concave 12-gons, concave 18-gons, concave 20-gons, and other polygons.
The structure is almost identical to the structure of A327330, but a little smaller.
The behavior seems to suggest that this sequence can be calculated with a formula, in the same way as A139250, but that is only a conjecture.
The "word" of this cellular automaton is "ab". For more information about the word of cellular automata see A296612.
It appears that A327330 shares infinitely many terms with this sequence.

Examples

			Illustration of initial terms:
.
.             /\     |/\|
.                    |  |
.
n:     0       1       2
a(n):  0       1       3
After two generations there are only one V-toothpick and two I-toothpicks in the structure, so a(2) = 1 + 2 = 3 (note that in total there are 2*a(2)= 2*3 = 6 single toothpicks of length 1).
		

Crossrefs

Cf. A139250 (normal toothpicks), A160164 (I-toothpicks), A160722 (a concave pentagon with triangular cells), A161206 (V-toothpicks), A296612, A323641, A323642, A327333 (first differences), A327330 (another version).
For other hybrid cellular automata, see A194270, A194700, A220500, A289840, A290220, A294020, A294962, A294980, A299770, A323646, A323650.

Formula

Conjecture: a(2^k) = A327330(2^k), k >= 0.

A327333 Number of elements added at n-th stage to the toothpick structure of A327332.

Original entry on oeis.org

1, 2, 4, 4, 4, 6, 12, 8, 4, 6, 12, 12, 10, 16, 32, 16, 4, 6, 12, 12, 10, 16, 32, 20, 12, 18, 36, 36, 26, 42, 84, 32, 4, 6, 12, 12, 10, 16, 32, 20, 12, 18, 36, 36, 26, 42, 84, 40, 16, 24, 48, 44, 24, 40, 80, 48, 32, 48, 96, 96, 64, 104, 208, 64, 4, 6, 12, 12, 10, 16, 32, 20, 12, 18, 36, 36, 26, 42, 84, 40
Offset: 1

Views

Author

Omar E. Pol, Sep 01 2019

Keywords

Comments

The word of this cellular automaton is "ab".
The structure of the irregular triangle is as shown below:
a,b;
a,b;
a,b,a,b;
a,b,a,b,a,b,a,b;
a,b,a,b,a,b,a,b,a,b,a,b,a,b,a,b;
...
Row lengths are the terms of A011782 multiplied by 2, also the column 2 of A296612.
Columns "a" contain numbers of V-toothpicks. Columns "b" contain numbers of I-toothpicks. See the example.
For further information about the word of cellular automata see A296612.

Examples

			Triangle begins:
1,2;
4,4;
4,6,12,8;
4,6,12,12,10,16,32,16;
4,6,12,12,10,16,32,20,12,18,36,36,26,42,84,32;
4,6,12,12,10,16,32,20,12,18,36,36,26,42,84,40,16,24,48,44,24,40,80,48,32,48,...
It appears that right border gives the even powers of 2.
		

Crossrefs

First differences of A327332.
Column 1 gives A123932.
For other hybrid cellular automata, see A194271, A194701, A220501, A289841, A290221, A294021, A294963, A294981, A299771, A323647, A323651.

A161420 V-toothpick sequence starting from a V-toothpick whose central point touch a straight line, as a V.

Original entry on oeis.org

0, 1, 3, 5, 7, 11, 19, 25, 31, 39, 51, 59, 69, 79, 99, 117, 127, 143, 163, 171
Offset: 0

Views

Author

Omar E. Pol, Jun 10 2009

Keywords

Comments

The sequence gives the number of V-toothpicks after n-th stages on hexagonal net. A161421 (the first differences) gives the number added at the n-th stage. See A161206 for more information.
Also, it appears this is a H-toothpick sequence in the first quadrant on the square grid, starting with a D-toothpick from the point (0,0). The sequence gives the number of toothpicks and D-toothpicks after n-th stage. A161421 (the first differences) gives the number added at the n-th stage. For more information see A182838.

Crossrefs

A161421 First differences of A161420.

Original entry on oeis.org

0, 1, 2, 2, 2, 4, 8, 6, 6, 8, 12, 8, 10, 10, 20, 18, 10, 16, 20, 8
Offset: 0

Views

Author

Omar E. Pol, Jun 10 2009, Dec 12 2010

Keywords

Comments

Number of V-toothpicks added at the n-th stage to the V-toothpick structure of A161420. See also A161206 and A161207.
Also it appears a(n) is also the number of toothpicks and D-toothpicks added at n-th stage to the H-toothpick structure of A161420. See also A182838 and A182839.

Crossrefs

A173530 Number of ON cells after n generations of three-dimensional cellular automaton related to Sierpinski's triangle and the toothpick sequences (See Comments for definition).

Original entry on oeis.org

0, 1, 3, 7, 11, 15, 23, 39, 47, 51, 59, 75, 91, 107, 139, 203, 219, 223, 231, 247, 263, 279, 311, 375, 407, 423, 455, 519, 583, 647, 775, 1031, 1063, 1067, 1075, 1091, 1107, 1123, 1155, 1219, 1251, 1267, 1299, 1363, 1427, 1491, 1619
Offset: 0

Views

Author

Omar E. Pol, Oct 10 2010

Keywords

Comments

The structure is similar to Sierpinski's triangle but in this case we are in 3-D.
The triangles of the new generation are arranged on planes that are orthogonal with respect to the planes of the previous generation.
Rules:
If n is odd then the triangles are arranged on planes that are parallel to the plane XZ.
If n is even then the triangles are arranged on planes that are parallel to the plane YZ.
The sequence A173531 (The first differences) gives the number of triangles added at the n-th stage.
Example:
We start with no triangles.
At round 1 we place a triangle anywhere in the space on the plane XZ.
At round 2 we place two other triangles on planes that are parallel to the plane YZ.
At round 3 we place four other triangles on planes that are parallel to the plane XZ.
And so on...
It appears that the three-dimensional pattern has a recursive, fractal (or fractal-like) structure. An animation can show the fractal (or fractal-like) behavior.
Note that the triangles can be replaced by V-toothpicks or L-toothpicks. More generally, the triangles can be replaced by any polytoothpick formed by two toothpicks connected by one of its vertices, with an angle greater than zero degrees and less than 180 degrees.
In this structure every polytoothpick has two components, so after n stages the structure has 2 * a (n) components.
Note that for n <= 11, in all cases (using triangles or polytoothpicks), one of the views of the 3-D structure is equal to the toothpick structure of A139250 (See illustrations).
See the entries A139250, A161206 and A172310 for more information about the growth of toothpicks, V-toothpicks and L-toothpicks.

Crossrefs

Formula

Partial sums of A173531.
Previous Showing 21-30 of 33 results. Next