A272210
Difference table of the divisors of the positive integers (with every table read by antidiagonals upwards).
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 4, 1, 4, 5, 1, 1, 2, 0, 1, 3, 2, 2, 3, 6, 1, 6, 7, 1, 1, 2, 1, 2, 4, 1, 2, 4, 8, 1, 2, 3, 4, 6, 9, 1, 1, 2, 2, 3, 5, 0, 2, 5, 10, 1, 10, 11, 1, 1, 2, 0, 1, 3, 0, 0, 1, 4, 1, 1, 1, 2, 6, 1, 2, 3, 4, 6, 12, 1, 12, 13, 1, 1, 2, 4, 5, 7, -2, 2, 7, 14, 1, 2, 3, 0, 2, 5, 8, 8, 10, 15
Offset: 1
The tables of the first nine positive integers are
1; 1, 2; 1, 3; 1, 2, 4; 1, 5; 1, 2, 3, 6; 1, 7; 1, 2, 4, 8; 1, 3, 9;
. 1; 2; 1, 2; 4; 1, 1, 3; 6; 1, 2, 4; 2, 6;
. 1; 0, 2; 1, 2; 4;
. 2; 1;
.
For n = 18 the difference table of the divisors of 18 is
1, 2, 3, 6, 9, 18;
1, 1, 3, 3, 9;
0, 2, 0, 6;
2, -2, 6;
-4, 8;
12;
This table read by antidiagonals upwards gives the finite subsequence [1], [1, 2], [0, 1, 3], [2, 2, 3, 6], [-4, -2, 0, 3, 9], [12, 8, 6, 6, 9, 18].
Cf.
A000005,
A000217,
A027750,
A161700,
A184389,
A187202,
A273102,
A273103,
A273109,
A273135,
A273132,
A273136,
A273261,
A273262,
A273263.
-
Table[Table[#[[m - k + 1, k]], {m, Length@ #}, {k, m}] &@ NestWhileList[Differences, Divisors@ n, Length@ # > 1 &], {n, 15}] // Flatten (* Michael De Vlieger, Jun 29 2016 *)
A273262
Irregular triangle read by rows: T(n,k) = sum of the elements of the k-th antidiagonal of the difference table of the divisors of n.
Original entry on oeis.org
1, 1, 3, 1, 5, 1, 3, 7, 1, 9, 1, 3, 4, 13, 1, 13, 1, 3, 7, 15, 1, 5, 19, 1, 3, 10, 17, 1, 21, 1, 3, 4, 5, 11, 28, 1, 25, 1, 3, 16, 21, 1, 5, 7, 41, 1, 3, 7, 15, 31, 1, 33, 1, 3, 4, 13, 6, 59, 1, 37, 1, 3, 7, 3, 31, 21, 1, 5, 13, 53, 1, 3, 28, 29, 1, 45, 1, 3, 4, 5, 11, 4, 36, 39, 1, 9, 61, 1, 3, 34, 33, 1, 5, 19, 65
Offset: 1
Triangle begins:
1;
1, 3;
1, 5;
1, 3, 7;
1, 9;
1, 3, 4, 13;
1, 13;
1, 3, 7, 15;
1, 5, 19;
1, 3, 10, 17;
1, 21;
1, 3, 4, 5, 11, 28;
1, 25;
1, 3, 16, 21;
1, 5, 7, 41;
1, 3, 7, 15, 31;
1, 33;
1, 3, 4, 13, 6, 59;
1, 37;
1, 3, 7, 3, 31, 21;
1, 5, 13, 53;
1, 3, 28, 29;
1, 45;
1, 3, 4, 5, 11, 4, 36, 39;
1, 9, 61;
1, 3, 34, 33;
1, 5, 19, 65;
...
For n = 18 the divisors of 18 are 1, 2, 3, 6, 9, 18, and the difference triangle of the divisors is
1, 2, 3, 6, 9, 18;
1, 1, 3, 3, 9;
0, 2, 0, 6;
2, -2, 6;
-4, 8;
12;
The antidiagonal sums give [1, 3, 4, 13, 6, 59] which is also the 18th row of the irregular triangle.
-
Table[Map[Total, Table[#[[m - k + 1, k]], {m, Length@ #}, {k, m}], {1}] &@ NestWhileList[Differences, Divisors@ n, Length@ # > 1 &], {n, 27}] (* Michael De Vlieger, Jun 26 2016 *)
-
row(n) = {my(d = divisors(n)); my(nd = #d); my(m = matrix(#d, #d)); for (j=1, nd, m[1,j] = d[j];); for (i=2, nd, for (j=1, nd - i +1, m[i,j] = m[i-1,j+1] - m[i-1,j];);); vector(nd, i, sum(k=0, i-1, m[i-k, k+1]));}
tabf(nn) = for (n=1, nn, print(row(n)););
lista(nn) = for (n=1, nn, v = row(n); for (j=1, #v, print1(v[j], ", "));); \\ Michel Marcus, Jun 25 2016
Comments