cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 52 results. Next

A348993 a(n) = A064989(sigma(n) / gcd(sigma(n), A003961(n))), where A003961 shifts the prime factorization of n one step towards larger primes, while A064989 shifts it back towards smaller primes, and sigma is the sum of divisors function.

Original entry on oeis.org

1, 1, 1, 5, 2, 1, 1, 3, 11, 2, 2, 5, 5, 1, 2, 29, 4, 11, 3, 1, 1, 2, 2, 1, 29, 5, 1, 5, 6, 2, 1, 5, 2, 4, 2, 55, 17, 3, 5, 3, 10, 1, 7, 5, 22, 2, 2, 29, 34, 29, 4, 25, 8, 1, 4, 3, 1, 6, 6, 1, 29, 1, 11, 113, 2, 2, 13, 5, 2, 2, 4, 11, 31, 17, 29, 15, 2, 5, 3, 29, 49, 10, 10, 5, 8, 7, 2, 3, 12, 22, 5, 5, 1, 2, 6, 5
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2021

Keywords

Crossrefs

Cf. A000203, A000265, A003961, A064989, A161942, A342671, A348992, A349162, A349169 (gives odd k for which a(k) = A319627(k)).

Programs

  • Mathematica
    Array[Times @@ Map[If[#1 <= 2, 1, NextPrime[#1, -1]]^#2 & @@ # &, FactorInteger[#1/GCD[##]]] & @@ {DivisorSigma[1, #], Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]} &, 96] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A349162(n) = { my(s=sigma(n)); (s/gcd(s,A003961(n))); };
    A348993(n) = A064989(A349162(n));

Formula

a(n) = A064989(A349162(n)) = A064989(A348992(n)).

A347241 a(1) = 1, and for n > 1, a(n) is the largest prime factor (A006530) of all terms encountered when iterating the map x -> A000593(x), when starting from x = n, and including the n itself. If 1 is never reached when starting from n, then a(n) = -1.

Original entry on oeis.org

1, 2, 3, 2, 5, 3, 7, 2, 13, 5, 11, 3, 13, 7, 5, 2, 17, 13, 19, 5, 7, 11, 23, 3, 31, 13, 5, 7, 29, 5, 31, 2, 11, 17, 7, 13, 37, 19, 13, 5, 41, 7, 43, 11, 13, 23, 47, 3, 19, 31, 17, 13, 53, 5, 13, 7, 19, 29, 59, 5, 61, 31, 13, 2, 13, 11, 67, 17, 23, 7, 71, 13, 73, 37, 31, 19, 11, 13, 79, 5, 19, 41, 83, 7, 17, 43, 29
Offset: 1

Views

Author

Antti Karttunen, Aug 28 2021

Keywords

Examples

			For n = 17, the iteration proceeds as follows 17 -> 18 (= 2*3*3), 18 -> 13 (13 is a prime), 13 -> 14 (= 2*7), 14 -> 8 (= 2*2*2), 8 -> 1. The largest prime factor present (when including the starting term also) is 17, thus a(17) = 17.
		

Crossrefs

Programs

Formula

a(n) = max(A006530(n), A347240(n)).

A347243 Numbers k such that when iterating the map x -> A000593(x), we will not encounter a term x (after the starting point x=k) whose largest prime factor would be at least as large as A006530(k), before 1 is eventually reached.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 51, 52, 53, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 101
Offset: 1

Views

Author

Antti Karttunen, Aug 28 2021

Keywords

Comments

The initial 1 is included by a convention.

Examples

			For n = 17, the iteration proceeds as follows 17 -> 18 (= 2*3*3), 18 -> 13 (13 is a prime), 13 -> 14 (= 2*7), 14 -> 8 (= 2*2*2), 8 -> 1. The largest prime factor present after the initial step is 13, which is less than the largest prime factor of 17 (which is 17 itself), thus 17 is included in this sequence.
		

Crossrefs

Positions of zeros in A347244 and in A347245.
Subsequences: A000040 (conjectured), A000079.

Programs

A348930 a(n) = A038502(sigma(n)), where A038502 is fully multiplicative with a(3) = 1, and a(p) = p for any other prime p.

Original entry on oeis.org

1, 1, 4, 7, 2, 4, 8, 5, 13, 2, 4, 28, 14, 8, 8, 31, 2, 13, 20, 14, 32, 4, 8, 20, 31, 14, 40, 56, 10, 8, 32, 7, 16, 2, 16, 91, 38, 20, 56, 10, 14, 32, 44, 28, 26, 8, 16, 124, 19, 31, 8, 98, 2, 40, 8, 40, 80, 10, 20, 56, 62, 32, 104, 127, 28, 16, 68, 14, 32, 16, 8, 65, 74, 38, 124, 140, 32, 56, 80, 62, 121, 14, 28
Offset: 1

Views

Author

Antti Karttunen, Nov 04 2021

Keywords

Comments

Note that a(A005820(4)) = A005820(4) and a(A005820(6)) = A005820(6), i.e., the fourth and sixth 3-perfect numbers, 459818240 and 51001180160 are among the fixed points of this sequence, precisely because they are also terms of A323653. As the former factorizes as 459818240 = 256 * 5 * 7 * 19 * 37 * 73, it must follow that a(256)/256 * a(5)/5 * a(7)/7 * a(19)/19 * a(37)/37 * a(73)/73 = 1, because ratio a(n)/n is multiplicative. See also comments in A348738.

Crossrefs

Programs

  • Mathematica
    s[n_] := n / 3^IntegerExponent[n, 3]; Table[s[DivisorSigma[1, n]], {n, 1, 100}] (* Amiram Eldar, Nov 04 2021 *)
  • PARI
    A038502(n) = (n/3^valuation(n, 3));
    A348930(n) = A038502(sigma(n));

Formula

Multiplicative with a(p^e) = A038502(1 + p + p^2 + ... + p^e).
a(n) = A038502(A000203(n)).
For all n >= 1, A000265(a(n)) = A336457(n).

A337195 The 2-adic valuation of 1+A000265(sigma(n)), where A000265 gives the odd part.

Original entry on oeis.org

1, 2, 1, 3, 2, 2, 1, 4, 1, 1, 2, 3, 3, 2, 2, 5, 1, 3, 1, 1, 1, 1, 2, 4, 5, 1, 1, 3, 4, 1, 1, 6, 2, 2, 2, 2, 2, 4, 3, 1, 1, 2, 2, 1, 3, 1, 2, 5, 1, 1, 1, 1, 2, 4, 1, 4, 1, 1, 4, 1, 5, 2, 1, 7, 1, 1, 1, 6, 2, 1, 1, 2, 1, 1, 5, 2, 2, 1, 1, 1, 1, 6, 1, 3, 2, 1, 4, 1, 1, 1, 3, 1, 1, 1, 4, 6, 1, 2, 3, 1, 2, 2, 1, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Aug 18 2020

Keywords

Crossrefs

Programs

Formula

a(n) = A007814(A337194(n)) = A007814(1+A000265(A000203(n))).

A349756 Numbers k such that the odd part of sigma(k) is equal to gcd(sigma(k), A003961(k)), where A003961 is fully multiplicative with a(p) = nextprime(p), and sigma is the sum of divisors function.

Original entry on oeis.org

1, 2, 3, 6, 7, 14, 20, 21, 24, 27, 31, 42, 54, 57, 60, 62, 93, 114, 120, 127, 140, 160, 168, 186, 189, 216, 217, 220, 237, 254, 264, 301, 378, 381, 399, 408, 420, 434, 460, 474, 480, 513, 540, 552, 602, 620, 651, 660, 744, 762, 792, 798, 837, 840, 889, 903, 940, 1026, 1080, 1120, 1128, 1140, 1302, 1320, 1380, 1392, 1512
Offset: 1

Views

Author

Antti Karttunen, Dec 03 2021

Keywords

Comments

Numbers k for which A161942(k) = A342671(k).
From Antti Karttunen, Jul 23 2022: (Start)
Numbers k such that k is a multiple of A350073(k).
For any square s in this sequence, A349162(s) = 1, i.e. sigma(s) divides A003961(s), and also A286385(s). Question: Is 1 the only square in this sequence? (see the conjecture in A350072).
If both x and y are terms and gcd(x, y) = 1, then x*y is also present.
After 2, the only primes present are Mersenne primes, A000668.
(End)

Crossrefs

Positions of 1's in A348992.
Positions where the powers of 2 (A000079) occur in A349162.
Cf. A000203, A003961, A161942, A286385, A342671, A350072, A350073, A355946 (characteristic function).
Cf. A000668, A046528 (subsequences).
Cf. also A348943.

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p]^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; oddpart[n_] := n/2^IntegerExponent[n, 2]; q[n_] := oddpart[(sigma = DivisorSigma[1, n])] == GCD[sigma, s[n]]; Select[Range[1500], q] (* Amiram Eldar, Dec 04 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A355946(n) = { my(s=sigma(n)); !(A003961(n)%((s>>=valuation(s,2)))); };
    isA349756(n) = A355946(n);

A353365 Numbers k such that the odd part of sigma(sigma(k)) is equal to the odd part of sigma(k).

Original entry on oeis.org

1, 5, 12, 427, 9120, 9180, 9504, 9720, 9960, 10296, 10620, 10740, 10824, 11070, 11310, 11480, 11484, 11556, 11628, 11748, 11934, 11960, 12024, 12036, 12072, 12084, 12376, 12460, 12510, 12570, 12640, 12924, 12980, 13000, 13216, 13340, 13554, 13804, 13806, 13962, 13984, 14022, 14056, 14094, 14178, 14212, 14336, 14380
Offset: 1

Views

Author

Antti Karttunen, Apr 17 2022

Keywords

Comments

Numbers k such that sigma(sigma(k)) = 2^e * sigma(k), for some e >= 0.
Numbers k such that sigma(k) is in A336702.
Numbers k for which A000265(A051027(k)) = A161942(k).
If there existed any hypothetical 3-perfect number (A005820) of the form x = 4u+2 and not divisible by 3, then x would be also included in this sequence, as then sigma(sigma(x)) = 12*x = 4*sigma(x). Such x would be also a term of A349745 and of A351458, and x/2 would be a rare odd term of A000396, and also in A336702. See also the diagram in A347392.

Crossrefs

Programs

A356306 The nearest common ancestor of A000265(n) and gcd(A000265(n), sigma(n)) in the A253563-tree.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 5, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 9, 7, 1, 1, 1, 5, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Aug 03 2022

Keywords

Crossrefs

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A161942(n) = A000265(sigma(n));
    A253553(n) = if(n<=2,1,my(f=factor(n), k=#f~); if(f[k,2]>1,f[k,2]--,f[k,1] = precprime(f[k,1]-1)); factorback(f));
    A356300sq(x,y) = if(1==x||1==y,1, my(lista=List([]), i, k=x, stemvec, stemlen, h=y); while(k>1, listput(lista,k); k = A253553(k)); stemvec = Vecrev(Vec(lista)); stemlen = #stemvec; while(1, if((i=vecsearch(stemvec,h))>0, return(stemvec[i])); h = A253553(h)));
    A356306(n) = A356300sq(A000265(n), gcd(n, A161942(n)));

Formula

a(n) = A356300(A000265(n), A355931(n)).

A286359 Compound filter: a(n) = P(sigma(n), sigma(2n)), where P(n,k) is sequence A000027 used as a pairing function, and sigma is the sum of divisors (A000203).

Original entry on oeis.org

4, 39, 109, 217, 259, 753, 473, 1005, 1288, 1729, 1093, 3769, 1499, 3105, 4489, 4309, 2503, 8295, 3101, 8557, 8033, 7057, 4489, 16713, 7534, 9633, 12601, 15281, 7051, 28513, 8033, 17829, 18193, 15985, 18193, 40561, 11363, 19761, 24809, 37765, 13903, 50817, 15269, 34537, 48283, 28513, 18193, 70249, 25708, 47679, 41113, 47069, 23059, 79521, 41113, 67281, 50801
Offset: 1

Views

Author

Antti Karttunen, May 10 2017

Keywords

Crossrefs

Cf. A000203, A002131, A054785 (sequences matching to this filter), also A161942, A286357.

Programs

Formula

a(n) = (1/2)*(2 + ((A000203(n)+A000203(2*n))^2) - A000203(n) - 3*A000203(2*n)).

A336457 a(n) = A065330(sigma(n)), where A065330 is fully multiplicative with a(2) = a(3) = 1, and a(p) = p for primes p > 3.

Original entry on oeis.org

1, 1, 1, 7, 1, 1, 1, 5, 13, 1, 1, 7, 7, 1, 1, 31, 1, 13, 5, 7, 1, 1, 1, 5, 31, 7, 5, 7, 5, 1, 1, 7, 1, 1, 1, 91, 19, 5, 7, 5, 7, 1, 11, 7, 13, 1, 1, 31, 19, 31, 1, 49, 1, 5, 1, 5, 5, 5, 5, 7, 31, 1, 13, 127, 7, 1, 17, 7, 1, 1, 1, 65, 37, 19, 31, 35, 1, 7, 5, 31, 121, 7, 7, 7, 1, 11, 5, 5, 5, 13, 7, 7, 1, 1, 5, 7, 49
Offset: 1

Views

Author

Antti Karttunen, Jul 24 2020

Keywords

Comments

Sequence removes prime factors 2 and 3 from the prime factorization of the sum of divisors of n.

Crossrefs

Programs

Formula

a(n) = A065330(A000203(n)) = A038502(A161942(n)).
Multiplicative with a(p^e) = A065330(1 + p + p^2 + ... + p^e).
Previous Showing 31-40 of 52 results. Next