cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A162532 Numbers k whose largest divisor <= sqrt(k) equals 12.

Original entry on oeis.org

144, 156, 168, 180, 192, 204, 216, 228, 264, 276, 348, 372, 444, 492, 516, 564, 636, 708, 732, 804, 852, 876, 948, 996, 1068, 1164, 1212, 1236, 1284, 1308, 1356, 1524, 1572, 1644, 1668, 1788, 1812, 1884, 1956, 2004, 2076, 2148, 2172, 2292, 2316, 2364
Offset: 1

Views

Author

Omar E. Pol, Jul 05 2009

Keywords

Comments

See A161344 for more information.

Crossrefs

Programs

  • Maple
    A033676 := proc(n) local dvs; dvs := sort(convert(numtheory[divisors](n),list)) ; op(floor((nops(dvs)+1)/2) ,dvs) ; end: for n from 1 to 3500 do if A033676(n) = 12 then printf("%d,",n) ; fi; od: # R. J. Mathar, Jul 13 2009
  • Mathematica
    ld12Q[n_]:=First[Select[Reverse[Divisors[n]],#<=Sqrt[n]&]]==12;Select[ 12*Range[ 200], ld12Q] (* Harvey P. Dale, Mar 29 2013 *)

Formula

Numbers k such that A033676(k)=12.

Extensions

More terms from R. J. Mathar, Jul 13 2009

A162529 Numbers k whose largest divisor <= sqrt(k) equals 9.

Original entry on oeis.org

81, 90, 99, 108, 117, 126, 135, 153, 162, 171, 189, 207, 243, 261, 279, 333, 369, 387, 423, 477, 531, 549, 603, 639, 657, 711, 747, 801, 873, 909, 927, 963, 981, 1017, 1143, 1179, 1233, 1251, 1341, 1359, 1413, 1467, 1503, 1557, 1611, 1629, 1719, 1737, 1773
Offset: 1

Views

Author

Omar E. Pol, Jul 05 2009

Keywords

Comments

See A161344 for more information.

Crossrefs

Programs

  • Maple
    A033676 := proc(n) local dvs; dvs := sort(convert(numtheory[divisors](n),list)) ; op(floor((nops(dvs)+1)/2) ,dvs) ; end: for n from 1 to 2500 do if A033676(n) = 9 then printf("%d,",n) ; fi; od: # R. J. Mathar, Jul 13 2009
  • Mathematica
    lst = {}; For[n = 1, n <= 5000, n++, If[Last[Select[Divisors[n], # <= Sqrt@n &]] == 9, PrependTo[lst, n]]]; Reverse@lst (* Jasper Mulder (jasper.mulder(AT)planet.nl), Jul 14 2009 *)

Formula

Numbers k such that A033676(k)=9.

Extensions

More terms from R. J. Mathar and Jasper Mulder (jasper.mulder(AT)planet.nl), Jul 13 2009

A162531 Numbers k whose largest divisor <= sqrt(k) is 11.

Original entry on oeis.org

121, 132, 143, 154, 165, 176, 187, 198, 209, 220, 231, 242, 253, 275, 297, 319, 341, 363, 385, 407, 451, 473, 517, 539, 583, 605, 649, 671, 737, 781, 803, 847, 869, 913, 979, 1067, 1111, 1133, 1177, 1199, 1243, 1331, 1397, 1441, 1507, 1529, 1639, 1661
Offset: 1

Views

Author

Omar E. Pol, Jul 05 2009

Keywords

Comments

See A161344 for more information.

Crossrefs

Programs

  • Maple
    A033676 := proc(n) local dvs; dvs := sort(convert(numtheory[divisors](n),list)) ; op(floor((nops(dvs)+1)/2) ,dvs) ; end: for n from 1 to 2500 do if A033676(n) = 11 then printf("%d,",n) ; fi; od: # R. J. Mathar, Jul 13 2009
  • Mathematica
    ld = 11;
    selQ[n_] := AllTrue[Divisors[n], # <= ld || #^2 > n&];
    Select[ Range[ld, 200] ld, selQ] (* Jean-François Alcover, Apr 14 2020 *)

Formula

Numbers k such that A033676(k)=11.

Extensions

More terms from R. J. Mathar and Jasper Mulder (jasper.mulder(AT)planet.nl), Jul 13 2009

A147861 Triangle read by rows: T(n,k)=min(k, n/k) if k divides n, T(n,k)=0 otherwise (n >=1, 1<=k<=n).

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 0, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 2, 0, 2, 0, 0, 0, 1, 1, 0, 3, 0, 0, 0, 0, 0, 1, 1, 2, 0, 0, 2, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 3, 0, 2, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Omar E. Pol, Nov 16 2008, Jul 20 2009

Keywords

Examples

			Triangle begins:
1;
1,1;
1,0,1;
1,2,0,1;
1,0,0,0,1;
1,2,2,0,0,1;
1,0,0,0,0,0,1;
1,2,0,2,0,0,0,1;
1,0,3,0,0,0,0,0,1;
1,2,0,0,2,0,0,0,0,1;
1,0,0,0,0,0,0,0,0,0,1;
1,2,3,3,0,2,0,0,0,0,0,1;
1,0,0,0,0,0,0,0,0,0,0,0,1;
1,2,0,0,0,0,2,0,0,0,0,0,0,1;
1,0,3,0,3,0,0,0,0,0,0,0,0,0,1;
1,2,0,4,0,0,0,2,0,0,0,0,0,0,0,1;
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
1,2,3,0,0,3,0,0,2,0,0,0,0,0,0,0,0,1;
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
1,2,0,4,4,0,0,0,0,2,0,0,0,0,0,0,0,0,0,1;
1,0,3,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
1,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,1;
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
1,2,3,4,0,4,0,3,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1;
1,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
1,2,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1;
1,0,3,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
1,2,0,4,0,0,4,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
1,2,3,0,5,5,0,0,0,3,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
...
Row sums: A117004.
		

Crossrefs

Extensions

Submitted without a definition, which was supplied by Jon E. Schoenfield, Dec 13 2008

A163100 Triangle giving positive values of A147861.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 1, 2, 3, 3, 2, 1, 1, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 4, 2, 1, 1, 1, 1, 2, 3, 3, 2, 1, 1, 1, 1, 2, 4, 4, 2, 1, 1, 3, 3, 1, 1, 2, 2, 1, 1, 1, 1, 2, 3, 4, 4, 3, 2, 1, 1, 5, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 4, 4, 2, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Omar E. Pol, Jul 20 2009

Keywords

Examples

			Triangle begins:
1;
1,1;
1,..1;
1,2,..1;
1,......1;
1,2,2,....1;
1,..........1;
1,2,..2,......1;
1,..3,..........1;
1,2,....2,........1;
1,..................1;
1,2,3,3,..2,..........1;
1,......................1;
1,2,........2,............1;
1,..3,..3,..................1;
1,2,..4,......2,..............1;
1,..............................1;
1,2,3,....3,....2,................1;
1,..................................1;
1,2,..4,4,........2,..................1;
1,..3,......3,..........................1;
1,2,................2,....................1;
1,..........................................1;
1,2,3,4,..4,..3,......2,......................1;
1,......5,......................................1;
1,2,....................2,........................1;
1,..3,..........3,..................................1;
1,2,..4,....4,............2,..........................1;
1,......................................................1;
1,2,3,..5,5,......3,........2,............................1;
...
Row sums: A117004.
		

Crossrefs

Programs

  • Maple
    A147861 := proc(n,k) if k<=0 or k > n then 0; else if n mod k = 0 then min(k,n/k) ; else 0; fi; fi; end proc: A163100 := proc(n,k) local dvs; dvs := sort(convert(numtheory[divisors](n),list)) ; min( op(k,dvs),n/op(k,dvs)) ; end: for n from 1 to 60 do for k from 1 to numtheory[tau](n) do printf("%d,",A163100(n,k) ) ; end do; end do: # R. J. Mathar, Aug 01 2009

Extensions

Extended beyond row 12 by R. J. Mathar, Aug 01 2009

A163990 Square array read by antidiagonals where the row n lists the numbers k such that their largest divisor <= sqrt(k) equals n.

Original entry on oeis.org

1, 4, 2, 9, 6, 3, 16, 12, 8, 5, 25, 20, 15, 10, 7, 36, 30, 24, 18, 14, 11, 49, 42, 35, 28, 21, 22, 13, 64, 56, 48, 40, 32, 27, 26, 17, 81, 72, 63, 54, 45, 44, 33, 34, 19, 100, 90, 80, 70, 60, 50, 52, 39, 38, 23, 121, 110, 99, 88, 77, 66, 55, 68, 51, 46, 29, 144, 132, 120, 108
Offset: 1

Views

Author

Omar E. Pol, Aug 11 2009

Keywords

Comments

This sequence is a permutation of the natural numbers.
Note that the first row is formed by 1 together the prime numbers and the first column are the squares of the natural numbers.
For more information see A163280, the main entry for this sequence. (See also A161344).

Examples

			Array begins:
1, 2, 3, 5, 7, 11,
4, 6, 8, 10, 14,
9, 12, 15, 18,
16, 20, 24,
25, 30,
36,
See also the array in A163280.
		

Crossrefs

Formula

Row n lists the numbers k such that A033676(k)=n.

A294721 Irregular triangle read by rows: T(n,k) = n if k is the largest divisor of n <= sqrt(n), otherwise T(n,k) = 0. The first element of column k is in row k^2, n>=1, k>=1.

Original entry on oeis.org

1, 2, 3, 0, 4, 5, 0, 0, 6, 7, 0, 0, 8, 0, 0, 9, 0, 10, 0, 11, 0, 0, 0, 0, 12, 13, 0, 0, 0, 14, 0, 0, 0, 15, 0, 0, 0, 16, 17, 0, 0, 0, 0, 0, 18, 0, 19, 0, 0, 0, 0, 0, 0, 20, 0, 0, 21, 0, 0, 22, 0, 0, 23, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 25, 0, 26, 0, 0, 0, 0, 0, 27, 0, 0, 0, 0, 0, 28, 0, 29, 0, 0, 0, 0, 0, 0, 0, 0, 30
Offset: 1

Views

Author

Omar E. Pol, Nov 07 2017

Keywords

Examples

			Triangle begins:
1;
2;
3;
0,   4;
5,   0;
0,   6;
7,   0;
0,   8;
0,   0,   9;
0,  10,   0;
11,  0,   0;
0,   0,  12;
13,  0,   0;
0,  14,   0;
0,   0,  15;
0,   0,   0,  16;
17,  0,   0,   0;
0,   0,  18,   0;
19,  0,   0,   0;
0,   0,   0,  20;
0,   0,  21,   0;
0,  22,   0,   0;
23,  0,   0,   0;
0,   0,   0,  24;
0,   0,   0,   0,  25;
...
		

Crossrefs

Row n has length A000196(n).
Row sums give A000027.
Positive terms also give A000027.
Positive terms of column k, for k = 1..12, give respectively: A008578, A161344, A161345, A161424, A161835, A162526, A162527, A162528, A162529, A162530, A162531, A162532.

Formula

T(n, A033676(n)) = n.
T(n,k) = 0, if k is not equal to A033676(n), n >= 1, and 1 <= k <= A000196(n).
T(n,k) = n*A294821(n,k).
Previous Showing 11-17 of 17 results.