cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A167888 n-th single or isolated number^n-th non-single or nonisolated number.

Original entry on oeis.org

1, 4, 216, 248832, 612220032, 78310985281, 19683000000000, 4808584372417849, 717368321110468608, 5460999706120583177327, 1379946262057143768386569, 470184984576000000000000000, 164890958756244164895763202881
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 14 2009

Keywords

Examples

			a(1)=2^0=1, a(2)=4^1=4, a(3)=6^3=216, a(4)=12^5=248832.
		

Crossrefs

Formula

a(n)=A167706(n)^A167707(n).

Extensions

More terms from R. J. Mathar, May 30 2010

A167920 Smallest single or isolated number == 1 (mod n).

Original entry on oeis.org

2, 23, 4, 37, 6, 37, 113, 89, 37, 131, 12, 37, 53, 113, 211, 97, 18, 37, 457, 401, 127, 23, 47, 97, 251, 53, 163, 113, 30, 211, 373, 97, 67, 307, 211, 37, 223, 457, 79, 401, 42, 127, 173, 89, 541, 47, 941, 97, 491, 251, 307, 53, 743, 163, 331, 113, 457, 233, 60, 541
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 15 2009

Keywords

Examples

			For n = 72, the smallest single or isolated number in the sequence 1, 73, 145, 217, 289, 361, 433, 505, 577, ... is 577, so a(72) = 577.
		

Crossrefs

Extensions

Corrected (a(2) replaced by 23, a(3) inserted, 113 replaced by 97, 337 by 97, 257 by 97 etc.) by R. J. Mathar, May 30 2010

A167921 Single or isolated numbers-1.

Original entry on oeis.org

1, 3, 5, 11, 17, 22, 29, 36, 41, 46, 52, 59, 66, 71, 78, 82, 88, 96, 101, 107, 112, 126, 130, 137, 149, 156, 162, 166, 172, 179, 191, 197, 210, 222, 227, 232, 239, 250, 256, 262, 269, 276, 281, 292, 306, 311, 316, 330, 336, 347, 352, 358, 366, 372, 378, 382, 388
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 15 2009

Keywords

Crossrefs

Cf. A167706.

Extensions

Corrected (96 inserted) by R. J. Mathar, May 30 2010

A168047 Numbers k that divide the k-th isolated number.

Original entry on oeis.org

1, 2, 3, 4, 12, 25, 30, 470, 1224, 57843, 145122, 16805481, 5285171382
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 17 2009

Keywords

Crossrefs

Cf. A167706.

Programs

  • PARI
    lista(pmax) = {my(p1 = 2, p2 = 3, c = 1); print1(c, ", "); forprime(p3 = 5, pmax, if(p2 == p1 + 2, c++; if(!((p1+1)%c), print1(c, ", "))); if(p2 != p1 + 2 && p2 != p3 - 2, c++); p1 = p2; p2 = p3);} \\ Amiram Eldar, May 17 2024

Formula

{k: k | A167706(k)}.

Extensions

Definition and a(6), a(7) corrected; 4 terms added - R. J. Mathar, Jun 04 2010
a(12)-a(13) from Amiram Eldar, May 17 2024

A168249 n-th single or isolated number minus n-th squarefree number.

Original entry on oeis.org

1, 2, 3, 7, 12, 16, 20, 26, 29, 33, 38, 43, 48, 51, 57, 60, 63, 68, 72, 77, 80, 93, 96, 101, 112, 118, 122, 125, 130, 134, 145, 147, 158, 168, 171, 175, 181, 190, 195, 198, 204, 210, 213, 223, 236, 239, 243, 254, 259, 269, 271, 276, 282, 287, 292, 294, 298, 304
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 21 2009

Keywords

Formula

a(n)=A167706(n)-A005117(n).

Extensions

All numbers beyond a(18) corrected by R. J. Mathar, Jun 04 2010

A168270 Squarefree numbers which are also isolated numbers.

Original entry on oeis.org

2, 6, 23, 30, 37, 42, 47, 53, 67, 79, 83, 89, 97, 102, 113, 127, 131, 138, 157, 163, 167, 173, 211, 223, 233, 251, 257, 263, 277, 282, 293, 307, 317, 331, 337, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 439, 443, 449, 457, 462, 467, 479, 487, 491, 499, 503, 509
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 22 2009

Keywords

Crossrefs

Programs

  • Maple
    isA007510 := proc(n) if isprime(n) then not isprime(n-2) and not isprime(n+2) ; else false; end if ; end proc:
    isA014574 := proc(n) isprime(n+1) and isprime(n-1) ; end proc:
    isA167706 := proc(n) isA007510(n) or isA014574(n) ; end proc:
    isA005117 := proc(n) n =1 or numtheory[issqrfree](n) ; end proc:
    isA168270 := proc(n) isA005117(n) and isA167706(n) ; end proc:
    for n from 1 to 600 do if isA168270(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Dec 09 2009

Formula

Extensions

Corrected (missing terms inserted) by R. J. Mathar, Dec 09 2009

A168348 Primes which are the sum of two consecutive single or isolated numbers.

Original entry on oeis.org

41, 53, 67, 79, 89, 113, 127, 139, 151, 199, 269, 307, 353, 409, 461, 491, 547, 619, 701, 829, 919, 929, 1031, 1063, 1193, 1231, 1249, 1289, 1607, 1667, 1721, 1759, 2089, 2131, 2179, 2281, 2467, 2609, 2647, 2851, 2861, 2953, 3209, 3221, 3331, 3361, 3391, 3407, 3571
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 23 2009

Keywords

Examples

			a(1)=A167706(5)+A167706(6)=18+23=41.
		

Crossrefs

Extensions

A-numbers and entries corrected by R. J. Mathar, Nov 24 2009

A171433 n-th half of even single (or even isolated) numbers plus n-th half of even non-single (or even nonisolated) numbers.

Original entry on oeis.org

1, 6, 8, 13, 17, 25, 32, 42, 49, 65, 70, 86, 93, 109, 116, 121, 137, 144, 160, 167, 183, 202, 239, 247, 263, 294, 319, 335, 346, 359, 369, 445, 452, 456, 472, 485, 555, 562, 572, 579, 595, 626, 667, 692, 700, 707, 717, 772, 785, 801, 805, 866, 873, 898, 914
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 09 2009

Keywords

Examples

			a(1)=1+0=1, a(2)=2+4=6, a(3)=3+5=8.
		

Crossrefs

Cf. A167706(the single or isolated numbers), A167707(the non-single or nonisolatred numbers), A168044, A168497.

Formula

a(n)=A168497(n)+A168044(n).

Extensions

Entries checked by R. J. Mathar, May 23 2010

A171562 Numbers k such that the k-th non-single or nonisolated number is prime.

Original entry on oeis.org

1, 6, 8, 10, 11, 13, 15, 16, 17, 18, 21, 22, 23, 26, 27, 28, 29, 33, 34, 36, 38, 39, 40, 42, 44, 45, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 81, 82, 83, 85, 86, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 100
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 11 2009

Keywords

Crossrefs

Cf. A000040 (the prime numbers), A167706 (the single or isolated numbers).

Programs

  • Maple
    A167706 := proc(n) if n = 1 then 2; else for a from procname(n-1)+1 do if isA007510(a) or isA014574(a) then return a; end if; end do; end if; end proc:
    for n from 1 to 110 do p := A167706(n) ; if isprime(p) then printf("%d,",n) : end if; end do: # R. J. Mathar, May 23 2010

Extensions

Corrected (20 replaced with 18, 25 replaced with 23, 32 replaced with 29, etc.) by R. J. Mathar, May 23 2010

A280007 Balanced single (or balanced isolated) numbers (of order one): single (or isolated) numbers which are the average of the previous single (or isolated) number and the following single (or isolated) number.

Original entry on oeis.org

4, 12, 30, 42, 60, 228, 257, 270, 312, 373, 462, 570, 600, 733, 858, 882, 947, 977, 1092, 1103, 1123, 1187, 1230, 1290, 1302, 1367, 1428, 1511, 1620, 1747, 1753, 1907, 1998, 2028, 2287, 2340, 2417, 2550, 2677, 2688, 2730, 2903, 3313, 3319, 3540, 3582, 3637, 3733, 4020
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Feb 21 2017

Keywords

Comments

Balanced isolated numbers (of order two): 18, 30, 192, 312, ..

Examples

			a(1) = A167706(2) = (A167706(2-1) + A167706(2+1))/2 = (2 + 6)/2 = 4.
		

Crossrefs

Programs

  • Mathematica
    With[{nn = 560}, Function[s, Part[s, #] & /@ Select[Range[Length@ s - 1], Mean@{s[[# - 1]], s[[# + 1]]} == s[[#]] &]]@ Prepend[Union[Transpose[ Select[Partition[Prime@ Range@ nn, 3, 1], And[#[[2]] - #[[1]] != 2, #[[3]] - #[[2]] != 2] &]][[2]], Map[Mean, Select[Partition[Prime@ Range@ nn, 2, 1], Differences@ # == {2} &]]], 2]] (* Michael De Vlieger, Feb 22 2017, after Harvey P. Dale at A007510 and A014574 *)

Formula

a(n) = A167706(k) = (A167706(k-1) + A167706(k+1))/2.
Previous Showing 11-20 of 20 results.