cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A169773 Number of open knight's tour diagrams of a 3 X n chessboard that are symmetric under 180-degree rotation and have "type X": both endpoints occur in the same column.

Original entry on oeis.org

0, 0, 0, 0, 0, 4, 0, 0, 0, 16, 0, 0, 0, 264, 0, 0, 0, 2144, 0, 0, 0, 22408, 0, 0, 0, 211808, 0, 0, 0, 2087344, 0, 0, 0, 20207664, 0, 0, 0, 197082624, 0, 0, 0, 1916054112, 0, 0, 0, 18652927040, 0, 0, 0, 181485750208, 0, 0, 0, 1766199186560, 0, 0, 0
Offset: 4

Views

Author

N. J. A. Sloane, May 10 2010, based on a communication from Don Knuth, Apr 28 2010

Keywords

References

  • D. E. Knuth, Long and skinny knight's tours, in Selected Papers on Fun and Games, to appear, 2010.

Crossrefs

Formula

A169773(n)=0 unless n mod 4 = 1.

Extensions

a(31)-a(60) from Andrew Howroyd, Jul 01 2017

A169775 Number of open knight's tour diagrams of a 3 X n chessboard that are symmetric under 180-degree rotation and have "type B": the endpoints occur in different columns and disagree in color with the cells in the nearest corner.

Original entry on oeis.org

2, 0, 0, 0, 8, 0, 16, 0, 48, 0, 200, 0, 616, 0, 1832, 0, 6008, 0, 19304, 0, 62180, 0, 189580, 0, 615792, 0, 1895952, 0, 6136708, 0, 18699436, 0, 60490008, 0, 184450888, 0, 595959276, 0, 1811054676, 0, 5847417040, 0, 17754996288, 0, 57292227492
Offset: 4

Views

Author

N. J. A. Sloane, May 10 2010, based on a communication from Don Knuth, Apr 28 2010

Keywords

References

  • D. E. Knuth, Long and skinny knight's tours, in Selected Papers on Fun and Games, to appear, 2010.

Crossrefs

Formula

A169775(n)=0 unless n mod 2 = 0.

Extensions

a(31)-a(48) from Andrew Howroyd, Jul 01 2017

A169776 Number of geometrically distinct open knight's tours of a 3 X n chessboard that have twofold symmetry.

Original entry on oeis.org

2, 0, 0, 2, 10, 12, 22, 60, 76, 160, 292, 652, 1148, 2600, 3870, 9152, 13710, 32792, 48112, 116624, 171732, 428064, 589842, 1496508, 2069766, 5348640, 7164172, 18742712, 25160796, 66758832, 86664762, 232553036, 302742306, 821495496, 1044549008
Offset: 4

Views

Author

N. J. A. Sloane, May 10 2010, based on a communication from Don Knuth, Apr 28 2010

Keywords

References

  • D. E. Knuth, Long and skinny knight's tours, in Selected Papers on Fun and Games, to appear, 2010.

Crossrefs

Formula

A169776(n) = (A169773(n) + A169774(n) + A169775(n))/2.

Extensions

a(31)-a(38) from Andrew Howroyd, Jul 01 2017

A169769 Number of geometrically distinct closed knight's tours of a 3 X n chessboard.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 6, 0, 44, 0, 396, 0, 3868, 0, 37070, 0, 362192, 0, 3516314, 0, 34237842, 0, 333077332, 0, 3241403380, 0, 31542464952, 0, 306944118820, 0, 2986962829456, 0, 29066627247828, 0, 282854730020224, 0, 2752516325518516, 0
Offset: 4

Views

Author

N. J. A. Sloane, May 10 2010, based on a communication from Don Knuth, Apr 28 2010

Keywords

Examples

			The six solutions for n=10 were first published by Kraitchik in 1927.
		

References

  • D. E. Knuth, Long and skinny knight's tours, in Selected Papers on Fun and Games, to appear, 2010.

Crossrefs

Formula

a(n) = A169764(n)/4 + A169768(n)/2.
a(n) = 0 unless n mod 2 = 0.
Generating function: 2*z^10*((-2*(1 + 5*z^2 - 34*z^4 - 116*z^6 + 505*z^8 + 616*z^10 - 3179*z^12 - 4*z^14 + 9536*z^16 - 8176*z^18 - 13392*z^20 + 15360*z^22 + 13888*z^24 + 2784*z^26 - 3328*z^28 - 22016*z^30 + 5120*z^32 + 2048*z^34))/
(-1 + 6*z^2 + 64*z^4 - 200*z^6 - 1000*z^8 + 3016*z^10 + 3488*z^12 - 24256*z^14 + 23776*z^16 + 104168*z^18 - 203408*z^20 - 184704*z^22 + 443392*z^24 + 14336*z^26 - 151296*z^28 + 145920*z^30 - 263424*z^32 + 317440*z^34 + 36864*z^36 - 966656*z^38 + 573440*z^40 + 131072*z^42) -
(1 + 6*z^6 - 31*z^8 + 8*z^10 + 53*z^12 - 179*z^14 + 312*z^16 - 84*z^18 - 1280*z^20 + 1974*z^22 - 1232*z^24 - 858*z^26 + 10320*z^28 - 8154*z^30 + 5556*z^32 + 9972*z^34 - 35152*z^36 + 11992*z^38 - 37920*z^40 - 35856*z^42 + 47488*z^44 - 3888*z^46 + 103264*z^48 + 45344*z^50 - 12608*z^52 + 19520*z^54 - 30336*z^56 + 11072*z^58 - 35328*z^60 - 28160*z^62 - 84480*z^64 - 56832*z^66 + 12288*z^68 + 24576*z^70 + 40960*z^72 + 8192*z^74 + 16384*z^76)/
(-1 + 6*z^4 + 64*z^8 - 200*z^12 - 1000*z^16 + 3016*z^20 + 3488*z^24 - 24256*z^28 + 23776*z^32 + 104168*z^36 - 203408*z^40 - 184704*z^44 + 443392*z^48 + 14336*z^52 - 151296*z^56 + 145920*z^60 - 263424*z^64 + 317440*z^68 + 36864*z^72 - 966656*z^76 + 573440*z^80 + 131072*z^84)).

Extensions

More terms from R. J. Mathar, Oct 09 2010

A169774 Number of open knight's tour diagrams of a 3 X n chessboard that are symmetric under 180-degree rotation and have "type F": the endpoints occur in different columns and agree in color with the cells in the nearest corner.

Original entry on oeis.org

2, 0, 0, 4, 12, 20, 28, 120, 104, 304, 384, 1304, 1680, 4936, 5908, 18304, 21412, 63440, 76920, 233248, 281284, 833720, 990104, 2993016, 3523740, 10485472, 12432392, 37485424, 44184884, 131430320, 154630088, 465106072, 544994604, 1622783328, 1904647128
Offset: 4

Views

Author

N. J. A. Sloane, May 10 2010, based on a communication from Don Knuth, Apr 28 2010

Keywords

References

  • D. E. Knuth, Long and skinny knight's tours, in Selected Papers on Fun and Games, to appear, 2010.

Crossrefs

Extensions

a(31)-a(38) from Andrew Howroyd, Jul 01 2017
Previous Showing 11-15 of 15 results.