cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A267508 Smallest number "c-equivalent" to n.

Original entry on oeis.org

1, 2, 3, 4, 5, 5, 7, 8, 9, 10, 11, 9, 11, 11, 15, 16, 17, 18, 19, 18, 21, 21, 23, 17, 19, 21, 23, 19, 23, 23, 31, 32, 33, 34, 35, 36, 37, 37, 39, 34, 37, 42, 43, 37, 43, 43, 47, 33, 35, 37, 39, 37, 43, 43, 47, 35, 39, 43, 47, 39, 47, 47, 63, 64, 65, 66, 67, 68, 69, 69, 71, 68, 73
Offset: 1

Views

Author

Jörgen Backelin, Jan 16 2016

Keywords

Comments

For c-equivalence, see the comments to A233249. Briefly put, two positive integers m and n are c-equivalent in the sense of Vladimir Shevelev, if they have ordinary binary representations with the same multisets of substrings resulting from cutting the full strings immediately before each bit 1. A(n) is defined as the smallest positive integer, which is c-equivalent to n. Alternatively, in the manners of A114994, the lengths of these substrings can be considered as representing ways to write integers as sums of positive integers with arbitrarily ordered sums, and a(n) as the unique integer whose corresponding substring lengths form the corresponding integer partition.
For instance, the ordinary binary representations of 11, 13, and 14 are 1011, 1101, and 1110, respectively, which yields the equal multisets {"10","1","1"}, and {"1","10","1"}, and {"1","1","10"} of strings, respectively; whence 11, 13, and 14 are c-equivalent.
A(n) is an odd number if and only if the substring "1" appears at least once in the multiset. Since this is the case if and only if it also holds for the binary representation of n concatenated with itself, and A233312(n) = a(m) for the number m whose binary representation is this concatenation, we have a(n) == A233312(n) (mod 2) for all n. Moreover, empirical data has suggested that perhaps A233312(n)+1 == A171791(n+1) (mod 2) for all n >= 1. This relation holds in general if and only if a(n)+1 == A171791(n+1) for the same n, which in its turn is true if and only if the relation with fibbinary numbers first empirically observed by Paul D. Hanna in the comments to A171791 holds in general.
The sequence A163382 also maps n to a c-equivalent integer <=n; however, here, only cyclic permutations of the sequences of substrings are allowed. Thus, a more restricted equivalence relation is used; whence a(n) <= A163382(n) for all n. Equality holds for infinitely many n, including n = 1..37.

Examples

			The set of integers c-equivalent to 38 is {37,38,41,44,50,52} (with the binary representations 100101, 100110, 101001, 101100, 110010, and 110100, respectively). The smallest of these numbers is 37. Thus, a(38) = 37. Alternatively, the substrings of 100110_binary = 38 correspond to writing 6 as the sum of 3+1+2, which is a permutation of the partition 6 = 3+2+1, where the right hand side corresponds to 37. (On the other hand, only 41 and 52 may be achieved from 38 by cyclic permutations of the bits, whence A163382(38) = 38.)
		

Crossrefs

A114994 = range(a), A233312(n) = a(A020330(n)).

A237652 G.f. satisfies: [x^n] A(x)^(n^2) = [x^n] A(x)^(n^2-1) for n>1 with A(0)=A'(0)=1.

Original entry on oeis.org

1, 1, -3, 20, -245, 4290, -114422, 4086800, -203647509, 12920587070, -1053926397590, 105178069321944, -12765014959365682, 1838898931467398164, -311221726754896488780, 61047560951879121055296, -13747598006865584455353165, 3521759025274977423306328182, -1018406456608128511401443183654
Offset: 0

Views

Author

Paul D. Hanna, May 07 2014

Keywords

Examples

			G.f.: A(x) = 1 + x - 3*x^2 + 20*x^3 - 245*x^4 + 4290*x^5 - 114422*x^6 +...
The coefficients in relevant powers of g.f. A(x)  begin:
A^3: [1, 3, (-6), 43, -597, 11127, -313038, 11486268, ...];
A^4: [1, 4, (-6), 48, -721, 13836, -399342, 14835168, ...];
...
A^8: [1, 8,   4, (48), -1022, 21328, -677040, 26240352, ...];
A^9: [1, 9,   9, (48), -1071, 22572, -732768, 28655712, ...];
...
A^15: [1, 15, 60, 125, (-1260), 26508,  -986720, 40214775, ...];
A^16: [1, 16, 72, 160, (-1260), 26688, -1018704, 41720576, ...];
...
A^24: [1, 24, 204,  848,  54, (25680), -1211936, 50397024, ...];
A^25: [1, 25, 225, 1000, 525, (25680), -1230900, 51117200, ...];
...
A^35: [1, 35, 490, 3675, 14035, 52927, (-1360590), 54736260, ...];
A^36: [1, 36, 522, 4080, 16695, 61452, (-1360590), 54781344, ...];
...
A^48: [1, 48,  984, 11488, 82428, 399936, -450096, (53190144), ...];
A^49: [1, 49, 1029, 12348, 91679, 460110, -217266, (53190144), ...];
...
which illustrates [x^n] A(x)^(n^2-1) = [x^n] A(x)^(n^2) for n>1.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=[1, 1]); for(i=2, n, A=concat(A, 0); A[ #A]=(Vec(Ser(A)^((#A-1)^2-1))-Vec(Ser(A)^((#A-1)^2)))[ #A]); A[n+1]}
    for(n=0,30,print1(a(n),", "))

A250117 G.f. A(x) satisfies: [x^n] A(x)^((n+1)(n+2)/2) = 0 for n>1 with a(0)=1 and a(1)=2.

Original entry on oeis.org

1, 2, -10, 84, -868, 9872, -121392, 1522000, -20885744, 249139392, -4898915424, -6811333312, -4215314380800, -213186664776192, -15944754147807232, -1207550934725368320, -100056122156079206144, -8876452703027927096320
Offset: 0

Views

Author

Paul D. Hanna, Feb 05 2011

Keywords

Comments

This was formerly A147316, but has been renumbered because of a conflict.

Examples

			G.f.: A(x) = 1 + 2*x - 10*x^2 + 84*x^3 - 868*x^4 + 9872*x^5 +...
The coefficients in the triangular powers of g.f. A(x) begin:
A^1: [1, 2, -10, 84, -868, 9872, -121392, 1522000, -20885744, ...];
A^3: [1, 6, -18, 140, -1416, 15768, -193960, 2369664, -33862320, ...];
A^6: [1, 12, 0, 64, -828, 9504, -128128, 1447680, -25886016, ...];
A^10:[1, 20, 80, 0, -100, 704, -37440, 83200, -15426800, ...];
A^15:[1, 30, 270, 700, 0, -1944, -28600, -627360, -19260000, ...];
A^21:[1, 42, 630, 4004, 9492, 0, -73696, -1380240, -37310112, ...];
A^28:[1, 56, 1232, 13440, 74984, 189728, 0, -3286016, -76931120, ...];
A^36:[1, 72, 2160, 34944, 329112, 1804896, 5181696, 0, -170026128, ...];
A^45:[1, 90, 3510, 77700, 1073700, 9579168, 54737280, 181761840, 0,...]; ...
Note how the coefficient of x^n in A(x)^((n+1)(n+2)/2) = 0 for n>1.
		

Crossrefs

Cf. A171791.

Programs

  • PARI
    {a(n)=local(A=[1, 2]); for(m=3, n+1, A=concat(A, 0); A[#A]=-Vec(Ser(A)^(m*(m+1)/2))[m]/(m*(m+1)/2)); A[n+1]}

A350524 G.f. A(x) satisfies: [x^(2*n-2)] A(x)^(n^2) = 0 and [x^(2*n-1)] A(x)^(n^2) = 0 for n > 1, with a(0) = 1, a(2) = 2.

Original entry on oeis.org

1, 2, -6, 28, -144, 736, -3512, 14896, -61600, 509632, -12903296, 422568704, -17796848640, 824388274176, -43343785743488, 2375499099860224, -140774447935008256, 8727751762659943424, -578377033389467758592, 40230774454685666598912, -2967831511563656631672832, 229648123356288830870929408
Offset: 0

Views

Author

Paul D. Hanna, Jan 03 2022

Keywords

Examples

			G.f.: A(x) = 1 + 2*x - 6*x^2 + 28*x^3 - 144*x^4 + 736*x^5 - 3512*x^6 + 14896*x^7 - 61600*x^8 + 509632*x^9 - 12903296*x^10 + ...
The table of coefficients of x^k in A(x)^(n^2), for k>=0, begins:
n=1: [1, 2, -6, 28, -144, 736, -3512, 14896, -61600, 509632, ...];
n=2: [1, 8, 0, 0, 40, -512, 4608, -32768, 152272, 456064, ...];
n=3: [1, 18, 90, 60, 0, 0, -1176, 20592, -278208, 3442304, ...];
n=4: [1, 32, 384, 2048, 4256, 1792, 0, 0, -36672, 621568, ...];
n=5: [1, 50, 1050, 11900, 77600, 285760, 537000, 399600, 0, 0, ...];
n=6: [1, 72, 2304, 43008, 516456, 4147200, 22411776, 79921152, 178965072, 227782016, 0, 0, ...]; ...
in which both coefficients of x^(2*n-2) and x^(2*n-1) in A(x)^(n^2) equal zero for n > 1.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1,2],P); for(i=1,n, A=concat(A,0); P = (#A+1)\2;
    A[#A] = -polcoeff( Ser(A)^(P^2)/(P^2), #A-1) ); H=A; A[n+1]}
    for(n=0,30, print1(a(n),", "))

A371673 Expansion of g.f. A(x) satisfying [x^(n-1)] A(x)^(n^2) = A000108(n-1) * n^n for n >= 1, where A000108 is the Catalan numbers.

Original entry on oeis.org

1, 1, 2, 15, 284, 8575, 345460, 17190684, 1012901520, 68810750943, 5291667341342, 454479660308531, 43140290728900554, 4487833959824527910, 508072065566891421336, 62222074620010689986918, 8200304581300850453687880, 1157674985567876068399895997, 174357014524193551292388873190
Offset: 0

Views

Author

Paul D. Hanna, Apr 02 2024

Keywords

Comments

Conjecture: a(n) is odd for n > 0 iff n = 2*A003714(k) + 1 for some k, where A003714 is the Fibbinary numbers (integers whose binary representation contains no consecutive ones). See A263075, A263190, and A171791.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 15*x^3 + 284*x^4 + 8575*x^5 + 345460*x^6 + 17190684*x^7 + 1012901520*x^8 + 68810750943*x^9 + 5291667341342*x^10 + ...
The table of coefficients of x^k in A(x)^(n^2) begin:
 n=1: [1,  1,    2,    15,    284,    8575,    345460, ...];
 n=2: [1,  4,   14,    88,   1365,   38304,   1497150, ...];
 n=3: [1,  9,   54,   363,   4410,  105705,   3874824, ...];
 n=4: [1, 16,  152,  1280,  13804,  263408,   8535648, ...];
 n=5: [1, 25,  350,  3875,  43750,  688205,  18352800, ...];
 n=6: [1, 36,  702, 10200, 133389, 1959552,  42189822, ...];
 n=7: [1, 49, 1274, 23863, 376320, 5810763, 108707676, ...];
 ...
where the terms along the main diagonal start as
 [1, 4, 54, 1280, 43750, 1959552, 108707676, ...]
which equals A000108(n-1)*n^n for n >= 1:
 [1, 1*2^2, 2*3^3, 5*4^4, 14*5^5, 42*6^6, 132*7^7, ...].
Compare the above table to the coefficients in 1/(1 - n*x)^n:
 n=1: [1,  1,    1,     1,      1,       1,         1, ...];
 n=2: [1,  4,   12,    32,     80,     192,       448, ...];
 n=3: [1,  9,   54,   270,   1215,    5103,     20412, ...];
 n=4: [1, 16,  160,  1280,   8960,   57344,    344064, ...];
 n=5: [1, 25,  375,  4375,  43750,  393750,   3281250, ...];
 n=6: [1, 36,  756, 12096, 163296, 1959552,  21555072, ...];
 n=7: [1, 49, 1372, 28812, 504210, 7764834, 108707676, ...];
 ...
to see that the main diagonals are equal.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1], m); for(i=1,n, A=concat(A,0); m=#A;
    A[m] = ( m^m*binomial(2*m-1,m-1)/(2*m-1) - Vec( Ser(A)^(m^2) )[m] )/(m^2) );A[n+1]}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) [x^(n-1)] A(x)^(n^2) = n^n * binomial(2*n-1,n-1)/(2*n-1) for n >= 1.
(2) [x^(n-1)] A(x)^(n^2) = [x^(n-1)] 1/(1 - n*x)^n for n >= 1.
Previous Showing 11-15 of 15 results.