cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A172965 Number of ways to place 3 nonattacking knights on an n X n cylindrical board.

Original entry on oeis.org

0, 0, 6, 240, 1010, 4056, 12068, 30000, 65628, 130480, 240856, 418968, 694200, 1104488, 1697820, 2533856, 3685668, 5241600, 7307248, 10007560, 13489056, 17922168, 23503700, 30459408, 39046700, 49557456, 62320968, 77707000, 96128968, 118047240, 143972556
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 06 2010

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- 2 x^2 (15 x^9 - 141 x^8 + 564 x^7 - 1276 x^6 + 1812 x^5 - 1652 x^4 + 908 x^3 - 272 x^2 + 99 x + 3) / (x - 1)^7, {x, 0, 40}], x] (* Vincenzo Librandi, May 29 2013 *)

Formula

a(n) = n*(n - 3)(n^4 + 3*n^3 - 18*n^2 - 18*n + 164)/6, n>=6.
G.f.: -2*x^3*(15*x^9-141*x^8+564*x^7-1276*x^6+1812*x^5-1652*x^4+908*x^3-272*x^2+99*x+3)/(x-1)^7. - Vaclav Kotesovec, Mar 25 2010

Extensions

More terms from Vincenzo Librandi, May 29 2013

A178499 Number of ways to place 6 nonattacking knights on an n X n board.

Original entry on oeis.org

0, 0, 0, 170, 13384, 257318, 2774728, 20202298, 110018552, 481719518, 1781124856, 5756568738, 16676946372, 44127887910, 108192675468, 248568720338, 539925974784, 1116836380926, 2212958151968, 4220919779218
Offset: 1

Views

Author

Vaclav Kotesovec, May 28 2010

Keywords

Crossrefs

Column k=6 of A244081.

Programs

  • Mathematica
    CoefficientList[Series[- 2 x^3 (200 x^18 - 1540 x^17 + 2602 x^16 + 15442 x^15 - 98586 x^14 + 256698 x^13 - 336146 x^12 + 70977 x^11 + 587107 x^10 - 1302115 x^9 + 1569905 x^8 - 1100786 x^7 + 367130 x^6 - 212358 x^5 + 247682 x^4 + 212463 x^3 + 48293 x^2 + 5587 x + 85) / (x - 1)^13, {x, 0, 40}], x] (* Vincenzo Librandi, May 31 2013 *)

Formula

Explicit formula: a(n) = n^12/720-(3*n^10)/16+n^9/2+(1553*n^8)/144-(163*n^7)/3-(4493*n^6)/16+(4721*n^5)/2+(578777*n^4)/360-(143156*n^3)/3+(124917*n^2)/2+374990*n-899982, n >= 10.
G.f.: -2*x^4 * (200*x^18 -1540*x^17 +2602*x^16 +15442*x^15 -98586*x^14 +256698*x^13 -336146*x^12 +70977*x^11 +587107*x^10 -1302115*x^9 +1569905*x^8 -1100786*x^7 +367130*x^6 -212358*x^5 +247682*x^4 +212463*x^3 +48293*x^2 +5587*x +85) / (x-1)^13.
Previous Showing 11-12 of 12 results.